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Abstract

Human perception is remarkably flexible: We experience vivid three-
dimensional (3D) structure under diverse conditions, from the seemingly
random magic-eye stereograms to the aesthetically beautiful, but obviously
flat, canvases of the Old Masters. How does the brain achieve this apparently
effortless robustness? Using brain imaging we are beginning to discover how
different parts of the visual cortex support 3D perception by tracing different
computations in the dorsal and ventral pathways. This review concentrates
on studies of binocular disparity and its combination with other depth cues.
This work suggests that the dorsal visual cortex is strongly engaged by 3D
information and is involved in integrating signals to represent the structure
of viewed surfaces. The ventral cortex may store representations of object
configurations and the features required for task performance. These dif-
ferences can be broadly understood in terms of the different computational
demands of reducing estimator variance versus increasing the separation
between exemplars.
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INTRODUCTION

We inhabit a world of illuminated physical objects. The visual system is tasked with appreciating
the properties of these objects from a distance so that we might move among them and engage
with them. This process underlies our skills in navigation, our aesthetic appreciation of quality,
and our selection of appropriate foods and conspecifics. Traditional approaches stemming from
engineering have encouraged us to compartmentalize these skills [e.g., visual navigation, motion,
three-dimensional (3D) shape, object recognition, color, face perception] and break down the
inputs into manageable chunks (e.g., illuminant cues, chromaticity signals, shape from shading).
Here, I use this logic to review the mechanisms that support our perception of 3D structure.
However, this is a convenient fiction. All vision is three-dimensional: It depends on complex
interactions between objects, illuminants, and viewers that occupy different locations in space.
My focus is on the human brain; although I link to work in animal models, extensive reviews are
provided elsewhere (Cumming & DeAngelis 2001, Gonzalez & Perez 1998, Orban 2011, Parker
2007).

TAKING THE BRAIN TO ANOTHER DIMENSION

Our sensory apparatus sample the surrounding environment by projecting it into a lower-
dimensional measurementspace that provides a set of descriptors sufficient to promote our survival.
So we hear vibration energy over a limited frequency range and sample electromagnetic radiation
using detectors with limited spectral sensitivity (e.g., cone bandwidths of approximately 100 nm).
The classic starting point for discussing 3D vision is the potential difficulties that result from di-
mensionality reduction: How can we estimate a 3D world using a 2D projection onto the retina?
This problem is particularly acute when we think about scenes composed of isolated points and
thin lines (Figure 14).

b
disperty . i

GGV snum

Shhend Ty

= perspective

Figure 1

(@) The binocular correspondence problem. Given two retinal images, how does the brain match elements between the eyes? Nine
potential matches are illustrated plus two ghost half matches. Filled yellow circles represent a stable match. The reader might also
experience (by fusing the boxes below the eyes) four targets (filled orange circles), two of which are ghost matches. (b) Illustrations of
some of the different types of information used by the brain to gain an impression of depth.
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Some further thought might suggest that the answer to this question is straightforward. For
instance, we have two eyes and, thus, can triangulate the true depth of an object from the subtle
differences in positions registered on the two retinae (binocular disparity). Moreover, we have
access to a range of visual signals related to depth: These cues can, in isolation or combination,
give rise to an impression of 3D structure (Figure 1b). Perhaps the answer to the challenge of
perceiving three dimensions is, therefore, trivial: A rich natural world gives us more than enough
information to resolve ambiguity and explain our impression of depth. Yet it is not clear how
trivial such a solution would be to the neurons of the early visual cortex. Their responses resemble
a series of points and lines, posing a challenge in understanding how the brain translates from
locally ambiguous signals to extract the properties of extensive surfaces and objects (Wallach 1935).
Thus, although at the system level we can think about the range of signals that come together to
effect our impression of depth, it is clear there is some work to do in understanding the biological
computations that are responsible for this outcome.

Let us start trying to unpick the gray box between our ears by thinking about the nature
of the inputs and the outputs. The range of our natural viewing experiences suggests we can
infer depth in diverse environments. The most remarkable observations are, perhaps, that we
perceive depth under impoverished conditions: a collection of seemingly random dots (Julesz
1971, Wallach & O’Connell 1953) or an objectively flat painting viewed away from the artist’s
center of perspective projection (Pirenne 1970). This encourages us to think about multiple routes
in and our semantic classifications that carve visual inputs into different cues (Figure 15). By the
same token, considering the functional uses to which 3D information is pug, it is clear that there
are multiple routes out. For instance, disparity can be used to infer 3D structure, break camouflage
(Babington-Smith 1958), estimate surface reflectance (Blake & Biilthoff 1990), or control grasping
(Watt & Bradshaw 2002).

Having multiple routes in and multiple routes out has the potential to complicate our under-
standing of the neural mechanisms responsible for depth. Imagine measuring the neural response
to a disparity-defined 3D shape. What would this response reveal about the underlying cortical
process? Does the response correspond to low-level disparity statistics? Is it an estimate of depth
from the disparity cue (but not others)? Or is it a full estimate of shape based on integrating the
available sensory signals with prior knowledge? Moreover, what is the purpose of the represen-
tation? Does it simply act as a cue to segmentation, or support judgments of shape, or provide
a generalized depth map? We need to consider these issues when interpreting observations of
neuronal responses.

WITH MODULARITY IN MIND

To ground our thinking in the face of these complications, it is useful to have a conceptual
framework of potential processing architectures. Clark & Yuille (1990) provided a fundamentally
important theoretical discussion of the ways in which cues might interact within an information
processing system. They discussed a continuum of organizations, ranging from processing within
separable modules that are linearly combined (weakly coupled fusion) to complex (nonlinear)
interactions between cues (strongly coupled fusion). Under the weak scenario, cues are processed
independently in separable modules to yield an impression of depth. So, if looking at an image
depicting depth from disparity and shading (Figure 24), separate modules would process the two
cues (disparity- versus shading units). Our impression of depth would come from fusing the outputs
of these units (Figure 2b). Alternatively, disparity and shading may interact with each other’s
processing to mutually constrain the interpretation of each: For example, certain interpretations
of the shading cue could be ruled out based on the information provided by disparity (Biilthoff &
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(@) A stereogram depicting a dimpled surface defined by disparity and shading cues. This image, and
stereograms in subsequent figures, are designed for viewing through red-cyan anaglyph glasses: red filter
over left eye. (/) Weak fusion scenario for the modular processing of depth from each cue. The gray boxes
indicate other cues that may also be engaged by the stimuli. (¢) Strong fusion scenario that involves extensive
common processing and interactions between cues to determine the perceived shape. This architecture is
schematic and not intended to provide a complete description of how the brain estimates depth from these
cues. Information from other cues may also contribute but is not illustrated for simplicity.

Figure 2

Mallot 1988). Under this scenario (Figure 2c¢), we effectively lose the concept of separable modules
because the interactions between the specific signals provided by each cue become so extensive
that their processing cannot be said to be independent. This makes predicting the outcome in
untested situations (e.g., different curvatures or surface reliefs) difficult. Pragmatically, such an
architecture is unattractive: The ability to predict behavior in novel situations is a key element of
a linear systems approach.

Based on psychophysical evidence (Dosher et al. 1986; Johnston et al. 1993, 1994) and con-
siderations of the quantitative differences between cues, Landy and colleagues (1995) made a
convincing case for a modified version of the weak fusion framework. They advocated a modular
architecture in which cues are processed quasi-independently, with limited interactions, to allow
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signals to be brought into coregistration (cues are “promoted” into comparable measurement
scales and cross-calibrate one another). This view has been strongly endorsed by psychophysical
tests of integration both within and between sensory modalities. In particular, perceptual judg-
ments in combined cue situations (e.g., shape from disparity and texture, or from disparity and
haptics) can be predicted from judgments based on cue attributes measured separately (Ernst &
Banks 2002, Hillis et al. 2002, Jacobs 1999, Knill & Saunders 2003); that is, depth(disparity +
haptics) is predicted from depth(disparity) and depth(haptics). Remarkably, these predictions
relate not only to the magnitude of the estimated shape (weighted linear combination), such
as the perceived slant of a surface, but also to the precision with which participants can make
their judgments (maximum likelihood estimation), such as the participants’ variability in judging
slant.

Despite this strong empirical case for modularity and its computational advantages (Marr 1976),
it is not immediately clear how this translates to the human brain. In particular, modular special-
ization necessitates considerable redundancy at higher levels of the visual system, whereby similar
operations are performed in parallel. Empirically, there is little evidence of cortical areas wholly
specialized for the processing of a particular depth cue. Moreover, it is perhaps presumptuous
to suppose that our linguistic labels of depth cues correspond to the information architecture
employed by the brain (despite the labels’ intuitive appeal). To consider some specific examples,
neurons sensitive to disparity are found throughout the visual and parietal cortices (Orban et al.
2006, Parker 2007), suggesting widespread use of binocular signals. Tests of shading cues initially
suggested a prescribed locus in the ventral stream (Georgieva et al. 2008). However, subsequent
work that related brain activity to the perception of shape from shading indicated the impor-
tance of responses in the dorsal visual areas and parietal cortex (Gerardin et al. 2010), and tests of
patients indicated that areas outside the ventral cortex are involved (Gillebert et al. 2015). Thus,
any modules for depth signals within the human brain are more plausibly vertical (i.e., streams
across the cortical hierarchy) (Ponce et al. 2008, T's’o et al. 2001), with a degree of specialization
at the level of individual cues within particular areas (or subareas) of the cortex (Chen et al. 2008).

USING IMAGING TO STUDY 3D VISION

Our understanding of the neural circuitry that underlies human 3D vision has improved dramat-
ically during the past 20 years through the maturing of noninvasive imaging protocols. These
techniques [principally functional magnetic resonance imaging (fMRI) and electroencephalogra-
phy (EEG)] measure responses to visual stimulation aggregated over large numbers of neurons,
meaning that spatial resolution is limited. Moreover, the signal-to-noise ratio is low relative to
recordings of single neurons, so that measurements typically require extensive averaging across
stimulus repetitions. Coupled with the slow temporal dynamics of the BOLD (blood oxygen
level-dependent) signal used in fMRI, this has a rate-limiting effect on the number of stimulus
conditions that can be recorded. Nevertheless, these methods offer wide coverage of cortical activ-
ity. For instance, Figure 3 provides an overview of visual areas localized through the retinotopic
specificity of fMRI responses (e.g., early visual areas where the position of retinal stimulation is
mapped out in a systematic way across the cortical surface) and through the use of functional
contrasts (e.g., the human motion complex, hMT+/VS5, is localized by contrasting moving and
static patterns). Moreover, by integrating fMRI measurements with psychophysics, we have the
facility to relate visual processing to its functional use. To understand the application of these
methods to 3D vision, it is worth spending a few moments thinking about the logic and potential
pitfalls of the approach. (I focus on fMRI, although many issues are common to other techniques,

such as EEG).
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An illustration of visual areas within the human brain. The flat maps show the demarcation of different regions of interest in the left

and right hemispheres of a single participant’s brain. The activity pattern shows responses to a visual field mapping stimulus defined by
a depth checkerboard. The V3B/KO (kinetic occipital) region is shown in relation to the lateral occipital (LO)1 and LO2 designations.
The identification of LO1 and LO2 in this brain is difficult using polar and eccentricity mapping data. Figure created by Dr. Hiroshi Ban.
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Functional imaging measurements are rarely absolute, but rather provide information about
changes in brain activity. In designing an experiment, we therefore typically require a contrast
between different stimulus conditions. A basic starting point is to establish that an area responds
to a visual signal (e.g., stimulus on versus stimulus off). However, asking more detailed questions
about processing requires more sophisticated contrasts.

Consider the investigation of whether an area encodes 3D structure from a cue such as shading.
The choice of test stimulus might be obvious (a shading pattern that evokes a depth percept);
however, itis often difficult to select an appropriate null stimulus. Ideally, the experimenter would
choose a contrasting stimulus that has the same image features but does not give rise to a depth
percept. In practice, this is difficult to achieve, so the choice of null stimulus will reflect our best
guess at a control for a particular stage of visual processing (Georgieva et al. 2008). These choices
can critically affect the inferences we draw about the locus of activity underlying the processing of
a particular signal (Figure 44). Moreover, if the low-level image features differ between depth and
nondepth stimuli, it can be difficult to determine whether an fMRI response relates to simple, low-
level features or the depth percept. Yet such simple, low-level feature differences are presumably
responsible for determining whether a 3D structure is perceived (Fleming et al. 2011). Thus, it
can be problematic to draw a distinction between the representation of low-level features versus
depth structure. One approach is to randomize the images (e.g., type of texture or reflectance
map) as much as possible and look for consistency in fMRI responses to a given 3D shape despite
dramatic changes in the visual input. This approach can be successful, provided that images that
appear radically different do not share the same underlying structure (Fleming et al. 2004).
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Figure 4

Tllustrations of the logic of traditional brain imaging. (#) The logic of contrasts. The box depicts the brain,
with a stimulus condition evoking a pattern of activity. A contrasting control or null stimulus is shown;
activity is subtracted from that for the stimulus condition, yielding a map of brain activity. The choice of null
stimulus (7, 7, or 7ii ) affects the localized brain activity. (b) Test for multicue processing based on overlapping
activity. (¢) Potential interpretive difficulties with 4. (4) Illustration of the transducer functions that relate
stimulus intensity to evoked activity. Different regions of the curve have different properties for tests of
additivity. The form of the BOLD transducer function is almost certainly different than for spiking neural
activity, and may differ between depth cues (red versus orange curves). Abbreviations: BOLD, blood oxygen
level-dependent; fMRI, functional magnetic resonance imaging.
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If we now turn to the question of testing for depth responses from disparity, the choice of the null
stimulus may seem simpler. In particular, a common logic is to contrast a “3D” condition (i.e., one
in which the experimenter depicts binocular disparities) with a “2D” or “no disparity” condition
(i.e., one in which the experimenter has not added binocular disparity to the display). This thinking
is questionable for two reasons. First, technically it ignores the basic geometry of binocular vision.
In particular, the locus of zero disparities (i.e., the horopter) depends of the fixation distance
of the participant (Ogle 1932). If an image depicts a stimulus in the plane of the presentation
screen (i.e., the “2D” viewing situation), then it is quite likely that there are considerable disparity
variations in the stimulus because of the deviation of the display screen from the horopter. (These
deviations can become quite substantial at short viewing distances or with stimuli that extend
into the periphery more than a few degrees of visual angle, or both). Thus, such “2D” conditions
will often provide an elaborate pattern of nonzero binocular disparities and may, therefore, reveal
processes associated with the complex case of identifying that a presented surface is flat, rather than
targeting low-level disparities (as is typically conceived in the experimental design). Second, and
more importantly, there is good reason to believe that near-zero binocular disparities constitute the
majority of our visual diet (Burge & Geisler 2014, Hibbard 2007). Single-unit measures indicate
good selectivity to stimuli at, or very close to, zero (for summaries see Cumming & DeAngelis
2001), and psychophysics (Badcock & Schor 1985, Stevenson et al. 1992) suggests that humans
are most sensitive to disparity information around zero. So it is unclear whether a zero disparity
stimulus provides a good choice of null stimulus.

This is not to imply that the endeavor is hopeless: Manipulations of disparity content have
provided important insight into the cortical landscape of neural responses to stimuli depicting
depth (Durand et al. 2009, Georgieva et al. 2008, Tsao et al. 2003). However, it should be clear
that choosing contrasting stimulus conditions is rarely simple, can affect the inferences we draw
from contrasts, and that, in understanding the processing within a target region of the cortex, we
need to think clearly about the information available. Parametric approaches, in which the inves-
tigator presents a systematic range of depth stimuli (Backus et al. 2001, Norcia et al. 1985, Regan
& Spekreijse 1970), offer the potential to map changes in brain activity in terms of stimulus pa-
rameters. Moreover, combining different measures (e.g., IMRI with electrophysiology, behavioral
judgments, or plausible computational processes) offers the potential to link neural and perceptual
states (Welchman & Kourtzi 2013).

THE NEURAL BASIS OF DEPTH FROM BINOCULAR DISPARITY

Our understanding of stereoscopic processing in the primate brain owes much to Julesz’s (1971)
popularization of random dot stereograms (RDSs; Figure 5). At a conceptual level, these stimuli

Figure 5

(2) Random dot stereograms (RDSs) depicting a disparity-defined object (a lateral view of the brain)

in correlated and anticorrelated stimuli. When wearing red-cyan anaglyph glasses to view the stereogram
(red filter over left eye), one should see coherent depth for the stimulus on the left but not on the right.

(b) Construction of correlated and anticorrelated RDSs, and the perceptual result. () V1 neuron’s response to
RDS patterns as measured by Cumming & Parker (1997) (adapted with permission from Macmillan Publishers
Ltd, Nature, 389, pp. 280-83, copyright 1997). (d) Logic of Preston et al.’s (2008) study using near versus
far decoding with correlated and anticorrelated RDSs. (e,f) Results from Preston et al. (2008). (¢) Decoding
accuracies across visual hierarchy. Deviations from the diagonal show a preference for correlated RDSs.

(f) Decoding accuracy as a function of the disparity difference between the near versus far stimuli (i.e., step
size). Decoding accuracies are normalized across regions of interest. In particular, the decoding performance
for a step size of 6 was subtracted from the decoding performance with the remaining disparity steps.
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highlighted that disparity could be divorced from figural representation, suggesting a modular
architecture for depth. At an empirical level, the stimuli provided a powerful tool for identifying
neural representations that are unambiguously binocular. In particular, manipulating the disparity
of a bar stimulus might change neural responses, but it would be difficult to be certain that this
was due to disparity rather than changes in the position of the bar in a single eye (Hubel & Wiesel
1970). RDS patterns enable us to avoid this potential covariate (Poggio et al. 1988), isolating
changes at a cyclopean level of processing that is at, or after, binocular combination.

To review the processing of depth from disparity in the human, itis useful to think about discrete
computational stages. (Neurobiology is undoubtedly less discrete.) First, the visual system needs
to establish correspondence between the two eyes’ views, coregistering image features so that
disparity can be extracted. This correspondence problem appears particularly challenging when
images comprise many self-similar elements (Julesz 1971). Second, local estimates of disparity
need to be integrated and interpolated across space to form descriptors of spatially extensive
features, such as edges, boundaries, and surfaces. Third, disparity estimates need to be related to
real world properties through some type of scaling operation. Finally, disparity representations
may be put to different purposes, so understanding a neuronal response necessitates relating it to
performance on different types of task.

How Does the Brain Extract Disparities?

Given images presented to the two eyes, the first computational challenge is to match the inputs
through a combination of vergence eye movements and neural coregistration (Marr & Poggio
1979). This process can be thought of as constrained local correlation between the left and right
eyes’ images, where disparity is defined by the spatial offset between correlated image items (Marr
& Poggio 1976). The binocular energy model of Ohzawa and colleagues (1990) and its refine-
ments (Fleet et al. 1996, Haefner & Cumming 2008, Read & Cumming 2007) provide, to a first
approximation, a biological implementation of such correlation-based disparity detectors. Em-
pirical measurements of V1 neurons suggest they are rather like binocular energy units: They
respond selectively to disparities depicted in RDSs (e.g., Figure 54,b) where stimuli are designed
such that white dots in the left eye match white dots in the right eye (correlated RDS). More-
over, following the predictions of the energy model, the response profile of V1 neurons inverts
(Figure 5¢) if anticorrelated RDS stimuli are presented (a white dot in the left eye matches a black
dot in the right eye; Figure 54,b) (Cumming & Parker 1997). This is intriguing, as it suggests
a marked dissociation between the responses of V1 neurons and the perceptual impression of
depth. In particular, the disparity information contained in anticorrelated patterns does not sup-
port stereoscopic judgments (Cogan et al. 1993), suggesting that V1 neurons extract disparities
that are not constrained by the global stereoscopic interpretation.

Testing responses evoked by correlated and anticorrelated RDSs provides a convenient means
of separating neural responses to disparity per se as opposed to the perceptual experience of depth
evoked by disparity, that is, disparity versus stereopsis. Bridge & Parker (2007) provided the first
fMRI measurements with anticorrelated stimuli, finding an overall reduction in fMRI responses
that was more marked in higher areas of the visual cortex. Preston et al. (2008) used correlated
and anticorrelated RDSs to investigate a basic property of disparity encoding: whether a target is
positioned near (crossed disparity) or far (uncrossed disparity) with respect to the fixation point.
They used a decoding algorithm to quantify the discriminability of fMRI responses to near versus
far depth positions, and drew a contrast between performance with correlated and anticorrelated
RDS stimuli (Figure 5d). They showed that fMRI responses in early visual areas (V1, V2, V3yv,
V4, V3d) supported the decoding of disparity signals in anticorrelated patterns, even though

Welchman



Annu. Rev. Vis. Sci. 2016.2:345-376. Downloaded from www.annualreviews.org
Access provided by Cambridge University on 06/15/17. For personal use only.

participants had no perception of the depth configuration (Figure 5e). By contrast, in higher
portions of the dorsal [V3A, V3B/KO (kinetic occipital), V7] and ventral [lateral occipital (LO)]
visual streams, decoding performance was markedly higher for the correlated stimuli, suggesting
disparity representations consistent with the stereoscopic experience of the participants.

In some respects Preston et al.’s (2008) results were confirmatory: Single-unit responses to
anticorrelated RDSs are attenuated in macaque V4 (Tanabe et al. 2004) and absent in the inferior
temporal (I'T) cortex (Janssen et al. 2003). I'T responses may be homologous to those in LO, and
recordings from the dorsal portion of macaque V4 may correspond to activity in human V3B/KO.
Nevertheless, by providing complete coverage of the visual cortex, the results raised a puzzle in
that intermediate ventral areas (V3v, V4) supported robust decoding of anticorrelated patterns in
marked contrast to higher ventral area LO. Therefore, the question arises of where the preference
for correlated features in area LO originates. In particular, fMRI responses to anticorrelated
stimuli do not appear to be progressively attenuated as information travels through intermediate
ventral areas (V3v, V4) to terminate in LO. Rather, attenuation in the response to anticorrelated
stimuli seems to be a property of the dorsal stream, suggesting that responses in LO may derive
from activity in dorsal areas. This notion is necessarily speculative because fMRI does not reveal
the nature of the intracortical interactions that give rise to responses in different cortical areas.

How Are Disparity Representations Organized?

These results suggest disparity representations consistent with stereoscopic perception in both
dorsal and ventral visual areas. However, further tests by Preston et al. (2008) suggested that the
form of the representations differed between pathways. In particular, by parametrically varying
disparity, they found that dorsal areas (notably V3A) produced highly specific fMRI responses.
By contrast, responses in LO were much less specific to the viewed disparity [e.g., the response to
a disparity of 9 arcminutes (arcmin) was similar to that of 3 or 15 arcmin]. Moreover, examining
decoding performance as a function of the disparity difference between the stimuli (i.e., step
size) suggested a further difference (Figure 5f). In the majority of cortical areas, classification
accuracy increased when the presented stimuli had a larger difference in depth (i.e., as a function
of the disparity step size). However, classification accuracy in LO was unaffected by the disparity
difference—that is, performance was similar whether the disparity planes were located close to the
fixation point (+3 arcmin) or far away (£15 arcmin). This suggests that disparity representations
in LO may be more categorical in reflecting local configurations (i.e., surfaces in front of or behind
their neighbors) than the metric, or tuned, representations in dorsal areas. This result is clearly
bounded by the experiential paradigm and analysis procedure (i.e., very small disparities would
cause a drop off in performance in LO, and accuracies would saturate for very large disparities
in other areas); nevertheless, subsequent single-unit recordings have supported the suggestion of
metric versus categorical representation in dorsal versus ventral areas (Srivastava et al. 2009).
The suggestion of different forms of representation in the dorsal and ventral pathways is related
to the study of binocular disparity expressed in different coordinate frames. Specifically, we can
think about the disparity of, for example, two objects in a scene either (#) in a frame of reference
anchored to the retina (absolute disparity) or () in terms of the difference in disparity between
the two objects (relative disparity). When the eyes are moved, the objects change position on
the retina, thereby changing the absolute disparity; however, the relative disparity between the
objects will remain more or less constant. Humans are considerably more sensitive to relative
depth (Westheimer 1979), which might suggest that the brain employs an explicit relative disparity
reference frame. Single-unit recordings in V1 indicate absolute encoding (Cumming & Parker
1999), but V2 (Thomas et al. 2002) and V4 (Umeda et al. 2007) are intermediate between absolute
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and relative frames of reference. Neri and colleagues (2004) used fMRI to test for representations
of absolute versus relative disparity in human visual pathways. They found that absolute disparity
changes drove responses in the dorsal pathway, and ventral areas (V4 and V8) were equally affected
by changes in absolute or relative disparity information. These ventral responses may reflect a
partial encoding of relative disparity signals or more abstracted template representations of local
disparity configurations.

A consistent observation from human imaging has been the strong modulation of dorsal visual
areas by disparity. Backus and colleagues (2001) first demonstrated a role for area V3A in human
stereopsis, with subsequent work pointing to V3A, V3B/KO, V7, and the posterior parietal cortex
(PPC) (Cottereau etal. 2011, 2012; Minini et al. 2010; Naganuma et al. 2005; Preston et al. 2008,
2009; Tyler etal. 2006). There is some evidence for lateralization to the right hemisphere (Durand
etal. 2009, Georgieva et al. 2009, Ip et al. 2014, Nishida et al. 2001, Tsao et al. 2003), compatible
with psychophysics (Durnford & Kimura 1971) and neuropsychology (Benton & Hécaen 1970,
Carmon & Bechtoldt 1969, Hamsher 1978).

To probe disparity responses in the dorsal visual cortex, Goncalves and colleagues (2015) mea-
sured fMRI responses to parametric disparity manipulations (Figure 6a). By working at high
field (7T) strengths, they closely sampled activity to test for spatial clustering in disparity repre-
sentations. Work in macaques had suggested that disparity is systematically organized across the
cortical surface (Chen et al. 2008, DeAngelis & Newsome 1999). Goncalves and colleagues (2015)
found that disparity preferences (i.e., the disparity evoking the maximal response of a voxel) were
spatially clustered and, importantly, were reproducible across imaging sessions (Figure 6b). They
found clustering was particularly marked in dorsal areas (V3A, V3B/KO) (Figure 6¢), with a likely
spatial period of at least 3 mm across the cortical surface. This is compatible with estimates from
the macaque brain (DeAngelis & Newsome 1999) scaled up to account for overall brain size.

Goncalves et al. (2015) sought to draw comparisons with electrophysiological measurements
by fitting fMRI responses with Gabor models to find the voxels’ peak response (referred to as
the disparity preference) and response width. In early areas (V1, V2, V3d), the width of voxels’
response profiles was not related to the overall disparity magnitude. However, in areas V3A and
V3B/KO there was a significant relationship between the peak disparity and response width. This
was intriguing because increases in the tuning width for larger disparity magnitudes are thought
to be a characteristic of neural populations that underlie human stereoscopic judgments (Lehky
& Sejnowski 1990, Stevenson et al. 1992). Goncalves et al. compared estimates of the relationship
between peak disparity and tuning width from their fMRI data with those from psychophysical
studies; this suggested a striking similarity between fMRI and psychophysical estimates in areas
V3A and V3B/KO (Figure 6d).

How Are Local Signals Integrated into Global Surfaces?

Natural environments produce variations in disparity across space, for instance, when facing an
inclined street (surface slant) or viewing the undulations of the human body (curvature). How does
the brain translate from local estimates of disparity to more extensive surface properties?

The work so far described has considered rather simple disparity structures, such as step edges
(Backus et al. 2001, Goncalves et al. 2015, Neri et al. 2004, Preston et al. 2008, Tsao et al.
2003, Tyler et al. 2006) or complex, disparity-defined curved shapes (Chandrasekaran et al. 2007,
Georgieva et al. 2009, Minini et al. 2010, Nishida et al. 2001, Preston et al. 2008). For the purpose
of understanding how local features are integrated into global surfaces, the former are too simple
(i.e., local and global surface properties are perfectly correlated), but the latter are too complex
(i.e., the parameters describing surface relief become too numerous), making it difficult to interpret
changes in fMRI responses. Therefore, Ban & Welchman (2015) targeted slant (Figure 7a), an
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Figure 6

Results from Goncalves et al. (2015) using 7T functional magnetic resonance imaging (EMRI). (#) Parametric manipulations of disparity
were used while collecting data from a small slab of voxels over the dorsal visual cortex. () Representation of the peak responses of
individual voxels mapped onto the cortical surface of a single participant’s V3A. Maps are shown for test and retest sessions.

(¢) Evidence for spatial clustering in fMRI responses emerges (diagonal structure) in higher dorsal areas. (d) Relation between peak
response of a voxel and the width of the response profile, accompanied by historic estimates of this relationship from psychophysics
(Stevenson et al. 1992). Figure adapted from Goncalves et al. (2015).
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Decoding representations of slant. (#) Random dot stereograms for viewing using red-cyan anaglyph glasses
depict slanted surfaces. As slant is changed, the projection size and range of disparities change. Therefore,
functional magnetic resonance imaging (EMRI) responses were measured while controlling for changes in
spatial projection and disparity range. (b)) Overview of the analysis by synthesis approach. fMRI data were
quantified using a similarity approach. An analogous approach was used for computer model simulations that
implemented different processing operations. Data were analyzed by using model outputs as regressors for
the empirical fMRI responses. Weights for the different regressors are shown schematically using line
thickness. Figure adapted from Ban & Welchman (2015).
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intermediate property that relates to the rotation of a plane away from frontoparallel (e.g., the
steepness of a hillside path when walking). (Slant should not be confused with tilt, which is the rota-
tion of a surface in the image plane, similar to the changing orientation of a clock’s hands over time).

To analyze their data, Ban & Welchman (2015) developed an approach—analysis by synthesis—
that sought to explain activity within a cortical area in terms of plausible computational processes.
They combined voxel similarity analysis (Kriegeskorte et al. 2008) with synthetic models of el-
ementary visual processes (i.e., edge detection, figure—ground segmentation, disparity-gradient
detectors) to trace the development of representations across the processing hierarchy. They
showed transformations in stimulus representations within the dorsal hierarchy from V1 to V3A
(Figure 7b). In particular, responses in V2 had a strong component related to figure-ground
segmentation, and V3A was strongly related to disparity gradients. Moreover, responses in V3A
had characteristics similar to psychophysical judgments of slant. These results link to single-unit
responses to slant in PPC (Rosenberg & Angelaki 2014, Rosenberg et al. 2013) that showed sen-
sitivity to slant defined by both texture and disparity cues. V3A may extract disparity gradients
that are then integrated with other depth cues at a further stage of processing [compatible with
observations on surface tilt in the parietal (Tsutsui et al. 2002) and I'T cortex (Liu et al. 2004)].

A test often used in single-unit studies has been to measure neural responses to slants and cur-
vature while manipulating the overall disparity of the stimulus (i.e., changing its position in depth)
(Janssen et al. 1999, 2000; Nguyenkim & DeAngelis 2003). This seeks to decouple the specific
disparities defining the stimuli from descriptors that reflect the physical form of a viewed object
(i.e., the objective 3D shape of the surface) and can be thought of as an extension to the concept
of relative disparity encoding. Ban & Welchman (2015) manipulated the overall disparity of their
stimuli and found that responses in V3A showed a degree of tolerance to changes in depth position.
This suggested an intermediate form of surface representation that is beyond disparity gradients
but not completely tolerant to changes in depth position. This is, perhaps, more compatible with
single-unit results than it may first appear. In particular, neuronal spike rates are often strongly
modulated by changes in the overall disparity of the stimuli (Janssen et al. 2000, Nguyenkim &
DeAngelis 2003, Srivastava et al. 2009), indicating that although preferences for particular stimuli
are maintained, neuronal responses are not invariant to the disparity structure defining the stimuli.

Ban & Welchman’s (2015) study provided a first step in uncovering the human brain mech-
anisms that translate from isolated point estimates to descriptors of surface structure. However,
they employed rather simple computational models, meaning that more () biologically realistic
or (b) computationally sophisticated simulations may better capture the processing architectures
within the human brain. Moreover, information processing hierarchies are not only spatial: The
relative timing of responses in different areas (Cottereau et al. 2014, Srivastava et al. 2009) is
likely to be critical in understanding the processing that underlies decisions about perceived depth
structure.

How Do Disparity Representations Relate to Task Performance?

Observing strong responses to disparity is a useful starting point in uncovering the brain’s depth
processing architecture; however, to understand the purpose of such representations, it is useful
to link responses to their functional use. Traditionally, we have learned about the importance of
particular brain regions by studying the behavioral consequences of brain injury. For instance,
neuropsychological testing indicated the importance of the right PPC for stereoscopic judgments
(Benton & Hécaen 1970, Carmon & Bechtoldt 1969, Hamsher 1978) (although the lesions
were not well characterized). More recent evidence has provided well-quantified descriptions of
brain damage in conjunction with well-controlled psychophysical testing. Specifically, Read and
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colleagues (2010) assessed patient DF, a visual form agnostic with extensive bilateral damage to
lateral occipital cortex. They found that DF had remarkably good stereoscopic vision in spite of
her injury, with deficits limited to performance on a relative disparity task. Moreover, this deficit
was ameliorated after DF gained experience from testing. This suggests that DF’s stereoscopic
abilities depended on activity outside the LO cortex (plausibly within the dorsal stream),
and that training enabled her to read out spared disparity representations in support of task
performance.

Electrophysiological studies have established links between the activity of disparity sensi-
tive neurons and perceptual judgments of depth in macaque area MT/V5 (Bradley et al. 1998,
DeAngelis et al. 1998, Dodd et al. 2001). Subsequent work dissociated the neural substrates of
two different disparity tasks in which performance was measured either by changing the signal-
to-noise ratio (Figure 84) or by titrating small differences between the depth of a target and its
local neighborhood (Figure 84). Before reviewing these findings, it is worth noting that these
tasks typically involve differences in both disparity magnitude and in the stimulus manipulation
used to affect task performance. This adds an interpretative complication, as differences in neural
substrates may relate to (#) the task or (/) the disparity magnitude. These tasks have been widely
discussed as “coarse” and “fine” tasks. However, these terms have specific meanings in relation
to the magnitude of disparities related to binocular fusion (Norcia et al. 1985, Ogle 1952): Fine
disparities are <30 arcmin. Therefore, I discuss them as, respectively, signal-in-noise tasks and
feature-difference tasks.

Single-unit recordings have suggested that these tasks have different neural substrates: Area
MT/V5 appears important for the signal-in-noise task, but V4 is implicated in the feature-
difference task. In particular, for the signal-in-noise task, there are similarities between neural
and psychophysical sensitivity in macaque M'T/V5 (Uka & DeAngelis 2003, 2004), with electrical
stimulation biasing psychophysical judgments (DeAngelis et al. 1998), and with inactivation reduc-
ing perceptual performance (Chowdhury & DeAngelis 2008). By contrast, electrical stimulation
of M'T/V5 had no measurable effect on a feature-difference task (Uka & DeAngelis 2006). In V4,
performance on a feature-difference task was affected by microstimulation (Shiozaki et al. 2012),
and neurons in both V4 and later ventral regions (I'T) showed activity during the feature-difference
task that predicted the perceptual choice (Shiozaki et al. 2012, Uka et al. 2005).

Based on these findings, Patten & Welchman (2015) recorded fMRI responses while human
participants performed one or another of the tasks. They used similar magnitudes of disparity
for the two tasks (within the classically defined fine range) and sampled activity across visual and
parietal cortical areas. Their results pointed to similarities between performance on both tasks and
fMRI responses in the PPC. This might suggest generalized disparity representations are manifest
in higher portions of the dorsal stream or, alternatively, common areas are involved in reading
out disparity signals to support task performance (Law & Gold 2008, Williams et al. 2003).

To provide a stronger test of the involvement of higher portions of the ventral and dor-
sal streams in performing these tasks, Chang and colleagues (2014) used transcranial magnetic
stimulation (TMS) to disrupt neural activity within area LO versus PPC. They found a disso-
ciation between TMS sites: Stimulation of PPC affected the signal-in-noise task in contrast to
LO stimulation, which affected the feature-difference task (Figure 8b). The effects they mea-
sured corresponded to a worsening of the participants’ disparity discrimination thresholds. Thus,
TMS perturbed task performance but did not devastate judgments in the same way that lesions
or invasive deactivations do (Chowdhury & DeAngelis 2008).

There is, however, a complication to the simple suggestion of dissociable neural loci be-
tween tasks. In particular, Chowdhury & DeAngelis (2008) showed in monkeys that the effects
of M'T/V5 inactivation on signal-in-noise tasks went away following a period of training on a
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(@) Signal-in-noise task versus feature-difference task. For both tasks, the subject decides whether the central
target is in front of or behind the surround. Performance is affected by changing the proportion of dots with
randomly assigned disparities (i.e., signal-to-noise ratio) or titrating the disparity difference between the
center and the surround. (b,c) Effects of dorsal versus ventral rTMS on signal-in-noise versus feature-
difference task before (b) versus after (¢) training. Results from Chang et al. (2014) show A,: the change in
the psychophysical threshold under TMS relative to control site (cz) stimulation. Abbreviations: LO, lateral
occipital; PPC, posterior parietal cortex; r'I'MS, repetitive transcranial magnetic stimulation.

feature-difference task. This suggested that perceptual experience changed the monkey’s reliance
on neural activity within area M'T/V5 and that task performance was instead critically dependent
on neural responses in another (unknown) location. This training effect drew strong parallels with
psychophysical evidence that learning to discriminate small differences in the orientation of a
target can boost participants’ ability to detect a target embedded in noise (Dosher & Lu 1998,
2005; Dosher et al. 2013).

To test for the neuronal circuitry that might be engaged in the signal-in-noise task after
training, Chang et al. (2014) included a perceptual learning dimension to their study. Following
the initial TMS assessments, participants were trained on a feature-difference task for 3 days (which
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produces benefits for the signal-in-noise task; see Chang etal. 2013). Thereafter, participants were
reassessed under TMS. Chang etal. (2014) found that performance on the signal-in-noise task was
no longer affected by TMS to PPC. Instead, stimulation of LO not only disrupted performance
on the feature-difference task (as it had done before training) but also on the signal-in-noise task
(Figure 8¢).

Chang et al. (2014) suggested that the same basic functional circuit was involved in the per-
formance of both the signal-in-noise and feature-difference tasks. However, the performance of
each task is limited by different processes: the ability to extract signals versus reading out stored
feature representations. They suggested that training on the feature-difference task optimized the
representations of disparity features in area LO. These boosted features facilitated figure—ground
segmentation and the identification of targets in noise, diminishing the need for noise filtering by
PPC. Thus, posttraining performance on the signal-in-noise task was no longer limited by signal
extraction but rather by feature representations stored in the ventral cortex.

"This interpretation places an emphasis on a network of cortical areas underlying task perfor-
mance rather than on a single neural locus underlying perception. Nevertheless, it is unlikely
that it provides a complete account. Evidence from patient DF (Read et al. 2010) suggested that
she could learn to perform stereoscopic judgments well with a compromised ventral cortex. This
might reflect a special case; however, these findings pose something of a general challenge to ex-
perimentalists used to working with well-trained human or animal observers whose visual systems
have adapted away from their wild-type state.

THE NEURAL BASIS OF DEPTH CUE FUSION

Disparity is often regarded as the gold standard depth cue and has been a main focus when testing
the neural mechanisms of 3D vision. Yet we seldom use disparity in isolation, and may ignore it
all together (Biilthoff et al. 1998, Glennerster et al. 2006, Muryy et al. 2013). How does the brain
integrate depth information obtained from different cues?

Letusstart by considering some scenarios for representations within different parts of the brain.
First, we might imagine an area that responds to only one type of cue (e.g., disparity): Changing
this cue would result in different fMRI responses, but manipulating other depth information
(e.g., texture, shading, or motion) would have no effect. As discussed at the outset, such a pure
module seems unlikely. Second, we might imagine areas that contain subpopulations of neurons
for different types of depth information (independence scenario). Changing one cue would change
the fMRI response, and if we changed cues concurrently, we would anticipate bigger changes in the
fMRI response. Finally, we might locate an area that, similar to perceptual judgments, integrates
information from different cues into a unified depth representation (fusion scenario). In this case,
changing the information provided by each cue would lead to fMRI changes if there were a change
in the fused estimate (Welchman et al. 2005).

How could we identify and separate such representations? Before reviewing specific findings,
it is worth revisiting our thoughts about the logic of brain imaging measurements.

Pitfalls in Using Imaging to Uncover Integration

A frequent starting point in designing an experiment to test for integration is to conceive of
studying two cues (e.g., depth from disparity, depth from shading) and their relative controls
(e.g., scrambled disparity, scrambled shading). We could make contrasts (disparity > scrambled
disparity, shading > scrambled shading) to produce two maps that reveal putative brain locations
favoring the impression of depth from each cue (Figure 44). To determine the site of integration,
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we could overlay the two activity maps and reveal their intersection (Figure 4b). The logic of
this approach is that the intersection reveals locations of convergence between the two depth
cues.

However, there are limitations to this thinking. First, the area of intersection clearly depends
on the statistical threshold of the individual contrasts, which, in turn, relates to the adequacy of
the control stimulus (Figure 4c¢). In particular, using a poor contrasting null stimulus for one
of the cues could lead to over- or underestimating the response related to the impression of
depth. Second, because fMRI responses aggregate activity over many thousands of neurons, an
overlap in fMRI responses for different cues could be caused by independent, but colocated, neural
populations (Figure 4c).

An alternative approach might be to think about the strength of activity evoked when depth
is defined by two cues relative to those evoked by either cue alone. Classic work on multisen-
sory integration in the superior colliculus indicated that responses to bimodal stimulation can be
superadditive—that s, they can exceed the response of adding each cue presented alone (Meredith
& Stein 1983). So an alternative approach is to test for superadditive fMRI responses. However,
for our purposes, there are a number of problems with this approach.

First, within the visual system it is difficult to talk about presenting cues alone or in isolation. By
doing so, other cues are unwittingly placed into conflict with the cue under study. For illustration,
consider an RDS (Figure 54). The phenomenology of seeing depth from random black and white
dots suggests a compelling means of studying depth perception using a pure disparity stimulus.
However, RDSs often create large cue conflicts: The dot patterns specify that the viewed surface is
flat (i.e., there is no texture gradient or element-size cue) in contrast to the disparity information.
[A classic example of this is Erkelens & Collewijn’s (1985) study that has been taken to indicate
that the visual system is blind to changes in absolute disparity, but in fact it shows that disparity
signals are overridden by the conflict with texture (Lugtigheid etal. 2011, Welchman et al. 2009)].
Similarly, isolating the shading cue often involves participants viewing stimuli binocularly, with
the effect that the brain receives good evidence that the viewed surface is flat. Thus, itis difficult to
talk about adding or subtracting depth cues because, despite our best intentions, the visual system
will combine the available information, which can make us less sensitive (Hillis et al. 2002).

Second, the extent of additivity depends on the relationship between stimulus intensity and
the neural response (Stanford et al. 2005)—that is, the neural transducer function (Figure 4d).
Superadditive responses are typically observed around a single unit’s response threshold, but more
intense stimuli are additive or subadditive. Paradigms for fMRI typically involve presenting intense
stimuli quite far from an observer’s detection threshold (to ensure a measurable fMRI response),
making it likely that responses would be outside the superadditive range. Potentially even more
important, however, is that the relationship between neural activity and the BOLD fMRI response
is complex (Heeger & Ress 2002) and imposes its own transducer function, which is unlikely to be
a facsimile of the neural transducer function. Further, there may be unknown different transducer
functions for different cues (Figure 4d), making predictions about the extent of additivity at the
fMRI response level extremely difficult (see also James & Stevenson 2012, Laurienti et al. 2005).

Thus, fMRI responses may be superadditive because two cues are integrated to enhance neural
responses (i.e., integration detected). But the same result (i.e., false positive) could be due to dif-
ferences in the transducer function between cues; an increase in additional load due to monitoring
two cues (Otto & Mamassian 2012); or there being multiple interactions, but not fusion, between
neurons sensitive to the two depth cues. By contrast, responses may be subadditive because cues
are integrated but the fMRI response has saturated; the sampled population of integrated neurons
is small and, therefore, does not evoke a strong fMRI response; or the null stimulus is not well
defined, weakening detection power (i.e., misses).
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Testing for Cue Fusion

To provide alternative tests of cue fusion, Ban and colleagues (2012) developed a paradigm based
on measuring the discriminability of fMRI responses from stimuli defined by disparity and motion
cues. The basic intuition behind their approach is that it should be easier to tell two stimuli apart
when differences between them are defined by two cues simultaneously. However, in contrast to
the approach sketched above, they ensured that disparity and motion signals were always presented
in the displays. In particular, they presented dot displays depicting a central target in front of or
behind its surround (Figure 92), in which the impression of depth was evoked by disparity or
differences in the target’s speed relative to its surround (relative motion), or both. Using this
disparity—motion stimulus space, they created four conditions in which the target’s near versus far
position was defined by (#) disparity, D, in which motion indicated zero depth (i.e., flat); (9) relative
motion, M, in which disparity indicated a flat surface; (¢) both cues conveying consistent depths,
DM (e.g., disparity =near; motion = near); or (d) incongruent cues, IC, in which cues indicated
opposite depths (e.g., disparity = near; motion = far).

These stimuli were designed to distinguish between the fusion and independence mechanisms.
However, a few steps of reasoning are required to understand precisely how we can tell them
apart. First, we need to note that under both scenarios we expect the discriminability of near versus
far configurations to be greater when both cues consistently indicate depth (DM condition). In
the fusion case, this is because the variance of the estimators is lower: In Figure 95, the fused
distributions are more sharply peaked than the individual cue representations of the stimuli. In
the independence case, this is because the estimators have a greater separation (i.e., the differently
colored blobs in Figure 94 are furthest apart when projected orthogonally to the negative diagonal,
as in Figure 9b). The improvement in the independence case corresponds to the quadratic sum of
the separations along the disparity and motion axes [DM = /(D? 4+ M?)], which has an intuitive
geometrical interpretation in terms of Pythagoras’ theorem.

Second, we need to return to the idea thatitis difficult to isolate individual cues. In particular, for
“single” cues (i.e., D and M conditions), the fusion mechanism is compromised because differences
between near versus far in one cue (e.g., disparity) are averaged together with the other (e.g.,
motion) thatindicates a flat surface. This has the effect of depressing the sensitivity of the detection
mechanism (Figure 9¢). Having appreciated this point, we can use single cues to our advantage.
In particular, the independence mechanism is not compromised by single cues: The lack of a
difference along one axis can effectively be ignored (for a geometrical intuition of why this is so,
consider that the hypotenuse can never be shorter than the catheti).

Figure 9

The depth of a central target can be defined in a space of disparity and motion. (#) Individual stimuli are represented as bivariate
Gaussian distributions (purple versus green blobs for near versus far stimuli, respectively). A detector could sense depth along only one
dimension (e.g., a disparity detector): Distinguishing the stimuli in this case depends on making a judgment using the marginal
distribution (illustrated along the bottom and right-hand sides). (b)) A fusion mechanism combines disparity and motion distributions
into a single dimension; this reduces the variance of the combined estimate (so/id distributions) relative to the components (dotted
distributions). The independence mechanism finds the optimal separating boundary between the stimuli. This increases the separation
between the distributions to improve discrimination performance. This corresponds to the quadratic sum of performance along the
component axes (by the Pythagorean theorem this means greater separation along the diagonal). () Performance of the fusion versus
independence mechanisms for the single-cue and incongruent-cue conditions. In both situations fusion performs worse than
independence. (d) Decoding predictions for an area that responds on the basis of fusion versus independence. For fusion, conflict in
single-cue disparity or motion conditions depresses sensitivity; this means that the empirical performance in the congruent disparity
plus motion condition surpasses the predictions from the single-cue conditions. Abbreviations: D, disparity; M, relative motion. Figure
adapted from Ban et al. (2012) and Dekker et al. (2015).
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These differences in the performance of the fusion and independence mechanisms for single-
cue stimuli allow us to separate them. In particular, we can use the discriminability of these
conditions to make a prediction for performance in the consistent-cue (DM) condition. If an
area represents independent depth estimates, discriminability in the DM condition should match
the quadratic sum of the D and M conditions (Figure 94). However, under fusion, because the
quadratic sum prediction uses compromised D and M performance, the empirical performance in
the DM case (where conflict is removed) will surpass the prediction (Figure 94).

As a further test of fusion, we can assess performance in the case in which stimuli differ in both
disparity and motion, but the cues specify the opposite depth configurations (the incongruent case).
An independence mechanism should be unaffected by incongruency (Figure 9c¢,d), as quadratic
summation ignores the sign of differences. However, a fusion mechanism would be affected: A
strict fusion mechanism would be insensitive, whereas a robust mechanism (Landy et al. 1995)
would revert to a single component (Figure 9¢,d).

Ban and colleagues (2012) first measured performance psychophysically using these stimuli,
finding that participants’ performance was above the quadratic summation prediction for the DM
condition and reverted to single-cue performance in the IC condition. This indicates that human
judgments depend on robust cue fusion, consistent with earlier reports (Hillis et al. 2002, Knill
& Saunders 2003). Ban and colleagues (2012) then used fMRI responses sampled from across
the visual cortex to test for fusion at the neural level. Their results pointed to fusion in area
V3B/KO (Figure 10z). In particular, in this area (but not elsewhere) DM decoding accuracies
were reliably above the quadratic summation prediction, and decoding performance dropped to
single-cue levels in the IC case.

As a further test, Ban et al. asked whether depth information provided by one cue (e.g.,
disparity) is diagnostic of depth indicated by the other (e.g., motion). They used a cross-cue
transfer test whereby they trained their decoding algorithm to discriminate depth configurations
using one cue and tested the classifier’s predictions for data obtained when depth was indicated
by the other. This result again suggested the importance of dorsal visual areas, and in particular
V3B/KO (Figure 10b).

In a follow-up study, Dekker et al. (2015) tested for fMRI responses related to the integration
of disparity and motion signals in children. Psychophysical tests had revealed that young children
(<10.5 years) fail to fuse visual and multisensory signals (Gori et al. 2008; Nardini et al. 2008, 2010)
as adults do, raising the question of whether visual responses related to cue fusion are also absent in
younger children. Dekker et al. (2015) showed that children younger than 10.5 years did not show
DM performance above quadratic summation nor did they show improved performance over ICs
in V3B/KO. By contrast, children above this transition point showed adult-like responses. This
suggests that the long developmental time course for cue fusion reflects changes occurring within
the visual cortex and indicates a tight link between perceptual fusion and activity in V3B/KO.

This finding of a localized cortical region involved in integrating cues was compatible with an
earlier suggestion that the KO region is specialized for the processing of depth structure (Tyler
et al. 2006). Initially, this part of the visual cortex had been identified using contrasting stripes of
motion, leading to its designation as the kinetic occipital region (Dupontetal. 1997, Van Oostende
etal. 1997). However, based on tests with disparity-defined structures, Tyler etal. (2006) suggested
() that it might be better thought of as an area that extracts generic depth representations and (b)
that it is functionally separate from its neighbor V3B. Ban et al. (2012) found little to differentiate
the processing within the retinotopically identified V3B and the functionally localized KO region,
and treated this as one region of the cortex (activity from the KO localizer typically extends into
V3B). An alternative classification scheme for this part of the cortex is the retinotopic localization
of areas LOI and LO2 (Larsson & Heeger 2006). Figure 3 shows these labels overlaid with
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(@) Ban et al.’s (2012) results from the quadratic summation test across regions of interest. Results are shown as an integration index in

which zero corresponds to performance in the congruent condition that matches the quadratic sum from single-cue conditions. Only in
V3B/KO is performance reliably above the prediction. (#) Tests of transfer between depth cues. In V3B/KO, decoding performance
across cues is very close to that within cues. (¢) Stimuli and results from Murphy et al. (2013). V3B/KO shows evidence for fusion.

(d) Stimuli and results from Dévencioglu et al. (2013). V3B/KO was again implicated in fusion, with perceptual differences between
participants reflected in differences in patterns of brain activity. Stimuli in panels ¢ and d are designed for stereoscopic viewing using
red-cyan anaglyph glasses. Abbreviations: fMRI, functional magnetic resonance imaging; KO, kinetic occipital.

V3B/KO, highlighting that there is overlap between LO1 and the V3B/KO designation. However,
the retinotopic borders of LO1 and LO2 are often hard to identify, meaning that the precise
delineation of these areas can be difficult (e.g., Figure 3), at least in the author’s experience.

Testing Fusion for Other Cues with More Complex Shapes

Demonstrating that disparity and motion information are combined might plausibly reveal a
special case of cue pairings. In particular, there are computational similarities between the cues
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(disparity is frozen motion or motion-defrosted disparity, depending on your perspective), psy-
chophysical results that suggest common stages of processing (Bradshaw & Rogers 1996, Domini
etal. 2006, Nawrot & Blake 1989, Poom & Borjesson 1999), and imaging results indicate similar-
ities between the processing of depth cues to motion and disparity (Murray et al. 2003, Peuskens
et al. 2004, Vanduffel et al. 2002). Therefore, it was important to determine whether Ban et al.’s
(2012) result was specific to disparity and motion or could be generalized to other cue pairings.
Moreover, depth structure is often more complex than the simple depth order relationships used
by Ban etal., so if V3B/KO provides a locus underlying behaviorally relevant fusion, it should also
respond to more complex forms of surface structure.

To this end, Murphy et al. (2013) tested the combination of texture and disparity cues to surface
slant. They found that V3B/KO produced fMRI responses that matched the expectations of cue
fusion: When disparity and texture both signaled slant performance they exceeded the quadratic
sum prediction, and this result was specific to congruent combinations of cues (Figure 10c).

Dévencioglu etal. (2013) examined the combination of shading and disparity cues that depicted
curved surfaces. They again found evidence for fusion in V3B/KO and that this activity was linked
to psychophysical judgments (Figure 10d). In particular, they found that their participants varied
considerably in their ability to integrate the shading and disparity signals: Some observers effec-
tively ignored the shape information provided by shading when making their judgments. These
behavioral differences between participants were reflected in the activity of V3B/KO, consistent
with Dekker et al.’s (2015) observations.

Together, these findings suggest that a relatively circumscribed cortical area is involved in
integrating cues to 3D structure. However, we should not interpret this as the site of a putative
generic depth map. We simply do not know enough about the nature of the representations in this
area, where they originate, which areas read them out, and how the different demands imposed
by tasks such as controlling movements or recognizing objects might require different types of
representations. Moreover, all of the tests have used disparity, so it is possible that activity in this
area is peculiar to the use of disparity with other depth signals. Finally, it seems likely that V3B/KO
also responds to other characteristics of viewed objects (Sun et al. 2014, Wada et al. 2014), so its
role is unlikely to be limited simply to inferring 3D structure.

FUTURE DIRECTIONS

The development of imaging approaches during the past two decades has dramatically improved
our understanding of depth representations in the human brain. Yet there is still a considerable
gap between the detailed models we have for the early cortical processes that measure disparity
(e.g., binocular energy model) and the higher cortical areas that represent fused depth structure
for potentially multiple purposes. Further, we have a poor understanding of the computational
processes that underlie the brain’s extraction of depth from cues other than disparity or motion.
The analysis-by-synthesis approach that seeks to expose the evolution of visual representations
within a processing hierarchy seems promising in helping to move understanding from localization
(i.e., where?) to computational processes (i.e., how?). Moreover, advances in machine learning
provide an opportunity to move from handcrafted, intuitive models to more biologically grounded
neural networks, whose structure has been shaped by exposure to natural images (Kriegeskorte
2015). Marrying better computational models to higher-resolution samples of brain activity is
likely to be important in understanding the overall architecture of depth representations in the
human brain.

A further challenge is to move beyond a static understanding of the functional architecture to
one that incorporates information about the temporal dynamics of representations. Recent EEG
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work has provided a glimpse of the relative timing of activity within the cortex that underlies
the perceptual interpretation of depth (Cottereau et al. 2014). This approach is based on under-
standing network-wide dynamics that may support processes for enhancing and reading out depth
representations, for instance, as suggested by the studies that point to plasticity in the circuitry
that underlies task performance (Chang et al. 2014, Chowdhury & DeAngelis 2008). However,
interactions are also likely to be critical at a local scale. Imaging techniques are starting to reveal
processing architectures within the laminar structure of the cortex (Muckli et al. 2015), offering
the potential to study how depth computations are shaped by combinations of feedforward, lateral,
and feedback inputs.

CONCLUDING REMARKS

In this review, we have seen the potential role for a range of different cortical areas in computing
the structure of the surrounding environment based on visual signals. The results reviewed suggest
there may be more modularization for depth processing than we might initially have supposed.
In particular, higher dorsal areas of the visual cortex appear highly responsive to depth, for both
disparity and its combination with other signals. Moreover, there is evidence for differences in the
nature of the representations between the higher dorsal areas and ventral area LO.

Previous discussions of the literature have suggested a distinction between the dorsal and
ventral cortices in terms of a division of labor between absolute versus relative signals (Neri 2005,
Parker 2007) or different magnitudes of disparity (Tyler 1990) and task manipulations (Roe et al.
2007). Here, I suggest a different way of capturing these differences that is centered on different
computational demands.

Under our discussion of cue integration, we focused on two means for improving the sensitivity
of an observer’s judgments: increasing the separation between two estimates (i.e., the indepen-
dence scheme in Figure 9b) versus reducing the variance of the estimators (the fusion scheme in
Figure 9b). These two modes of operation may be exploited for different types of tasks. If a
body movement is required, the brain is best served by fusing the available information to obtain
an estimate of the scene that is unbiased and has low variance. Such a representation would be
particular to the viewing situation (that is, highly specific) and variant under the manipulation
of individual cues. This provides the best metric information about the scene that is specific to
the current view. By contrast, recognition tasks are best served by maximizing the separation
of objects in a high-dimensional feature space while ignoring uninformative dimensions. Such a
mechanism would support invariant performance by discarding irrelevant, or nuisance, scene pa-
rameters (e.g., uninformative cues), yet it may be highly uncertain about the particular structure of
the scene. Perceptual learning may have a key role in this process by using ventral circuits to store
abstracted versions of configurations extracted by dorsal visual areas to support the recognition
and the performance of learned tasks.

SUMMARY POINTS
1. 3D vision depends on an interference process that resolves locally ambiguous signals.

2. The brain exploits multiple different depth signals and uses 3D information to support a
wide range of behaviors. These multiple routes in and routes out need to be considered
when studying neural responses to 3D structure.
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3. At a mechanistic level, depth processing is broadly understood within a modular archi-
tecture in which different cues are processed quasi-independently. At the neural level,
depth signals are represented at multiple stages within the visually responsive cortex.

4. Brain imaging methods allow us to image neural responses to 3D structure. However,
careful consideration needs to be given to the composition of the control stimuli and the
difficulties of isolating individual cues.

5. In the cortex, fMRI responses to disparity are widespread, with strong responses found
around area V3A. The nature of the disparity representations appears different in dorsal
versus ventral areas, with highly specific and clustered representations in dorsal areas.

6. Extracting spatial variations of disparity is likely to involve a dorsal hierarchy, with fMRI
evidence suggesting an important role for V3A in extracting disparity gradients. Re-
sponses in this area share characteristics with psychophysical judgments of depth.

7. Perceptual judgments of depth are likely to depend on activity in a network of areas that
includes the ventral LO and PPC. Extensive training appears to refine responses and
shift the limits on perceptual judgments from parietal to ventral areas.

8. Responses in area V3B/KO appear to be closely related to the fusion of different depth
cues. A range of different cues appears to be integrated in this area, and developmental
changes in the ability of children to fuse cues are mirrored by changes in activity in this
area.

FUTURE ISSUES
1. What is the computational architecture for processing depth cues other than disparity?

Are there processes analogous to the binocular energy model?

2. What are the hierarchical processes that converge in V3B/KO for cue fusion? How are
responses in this region read out to support different tasks?

3. Can better artificial models improve our understanding of processing within the human
brain? Integrating deep neural networks with fMRI (analysis by synthesis) may offer us
new insights into hierarchical computations within the human brain.

4. What are the dynamics of processing between different regions of the cortex?

5. What is the impact of training on the responses measured in different cortical areas? To
what extent are practiced observers representative of wild-type depth processing?

6. How will higher field strengths enable us to understand depth representations within
the human brain? Can we uncover systematic maps that are consistent between different
cues? What is the relationship between such maps and retinotopic organization?

7. What are the interactions within local areas of the cortex that support 3D perception?
Can we uncover computations in different laminar layers?
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