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Abstract

The way in which input noise perturbs the behavior of a system depends on the internal processing
structure of the system. In visual psychophysics, there is a long tradition of using external noise
methods (i.e., adding noise to visual stimuli) as tools for system identification. Here, we demonstrate
that external noise affects processing of visual scenes at different cortical areas along the human
ventral visual pathway, from retinotopic regions to higher occipitotemporal areas implicated in visual
shape processing. We found that when the contrast of the stimulus was held constant, the further
away from the retinal input a cortical area was the more its activity, as measured with functional
magnetic resonance imaging (fMRI), depended on the signal-to-noise ratio (SNR) of the visual

stimulus. A similar pattern of results was observed when trials with correct and incorrect responses
were analyzed separately. We interpret these findings by extending signal detection theory to fMRI
data analysis. This approach reveals the sequential ordering of decision stages in the cortex by

exploiting the relation between fMRI response and stimulus SNR. In particular, our findings provide
novel evidence that occipitotemporal areas in the ventral visual pathway form a cascade of decision

stages with increasing degree of signal uncertainty and feature invariance.

INTRODUCTION

There has been a long tradition in engineering to use noise to perturb an unknown system to
decipher the system’s internal mechanisms. Such external noise methods for system
identification have found a wide range of applications in visual psychophysics. They have been
used to identify the causes of performance limitations (Burgess and Colborne 1988; Legge et
al. 1987; Lu and Dosher 1999; Pelli 1990; Tanner and Birdsall 1958), infer properties of
features and representations for high-level pattern-recognition tasks (Liu et al. 1995; Majaj et
al. 2002; Pelli et al. 2003; Solomon and Pelli 1994; Tjan et al. 1995), determine how multiple
cues are combined to generate a percept (Ernst and Banks 2002; Knill 1998; Landy et al.
1995), identify the sources of capacity limits in visual search (Eckstein and Whiting 1996),
and distinguish the different enhancement mechanisms due to attention (Lu and Dosher
1998) and perceptual learning (Chung et al. 2005; Dosher and Lu 1999; Gold et al. 1999).
Remarkably, all these studies provided detailed information about the visual system’s
functional architecture using only limited means to quantify the system’s external behavior
(e.g., accuracy and speed) and without any access to the system’s internal states. Blood-
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oxygenation-level-dependent (BOLD) functional MRI (fMRI) allows noninvasive access to a
system’s internal states. There exists an attractive possibility that external noise methods can
be combined with fMRI to identify the neural mechanisms at different cortical regions in the
human brain. Although the effects of stimulus noise (Boynton et al. 1999; Dakin et al. 2002;
Rainer et al. 2001; Ress and Heeger 2003; Rees et al. 2000; Zenger-Landolt and Heeger
2003) and noise-like image scrambling (Grill-Spector et al. 1998) on the BOLD response have
been previously studied, the absence of a general theoretical framework that relates stimulus
signal-to-noise ratio (SNR) to BOLD activation has so far prevented any broad application of
the external noise methods in fMRI studies.

The goal of our study was twofold: to measure the effect of stimulus noise on the analysis of
visual scenes along the human visual pathway, from retinotopic regions to the lateral occipital
complex (LOC), an area in the occipitotemporal cortex known to be involved in the analysis
of visual shapes (Kanwisher et al. 1996; Malach et al. 1995) and object recognition (Bar et al.
2001; Grill-Spector et al. 2000), and to establish a theoretical framework for interpreting these
measurements. To this end, we manipulated the SNR of visual stimuli by adding spatially
correlated noise to noise-free images of natural scenes while keeping constant the root-mean-
square (RMS) contrast! of the images (Fig. 1; see also METHODS). Subjects’ task was to
decide if the two pictures presented on either side of a fixation point were taken from the same
scene. We measured the effect of stimulus SNR on BOLD responses across different cortical
visual areas. We present empirical evidence and theoretical arguments in the context of the
signal-detection theory (Green and Swets 1966) to show that the relationship between stimulus
SNR and BOLD amplitude is correlated with the sequential ordering of cortical areas in a
processing pathway. Our analysis and theoretical discussion mainly focus on the ventral
pathway, as the stimuli (static images) and task (object/scene discrimination) used in our
experiment are thought to engage primarily processing in the ventral occipitotemporal pathway
(Ungerleider and Mishskin 1982). Our empirical findings suggest that the analysis of visual
scenes in the occipitotemporal cortex is mediated by a cascade of decision stages with
increasing degree of invariance and signal uncertainty. Our analytical method establishes a
new approach for determining the sequential ordering of the processing stages along a decision
cascade based on the relation between fMRI response and stimulus SNR.

METHODS

Subjects

Stimuli

Eight students from the University of Tuebingen participated in this study. All subjects had
normal or corrected-to-normal vision. Six of the eight subjects had reliable retinotopy.
Behavioral and fMRI data from these six subjects (3 males, 3 females, age: 22-35) were
analyzed and reported here.

In each trial, two image panels of 152 x 216 pixels each were presented side by side (7.5°
center to center) with the fixation point presented midway between the panels (Fig. 1, A and
B). These panels were two large cutouts from the left and right halves of an indoor or outdoor
photograph selected from the Corel Stock Photo Library. A subject’s task was to judge if the
two panels were taken from the same scene. The original photographs (364 x 236 pixels) were
in color. The selected set was converted to black and white, and the gray levels of each picture
were linearly adjusted such that all pictures had the same mean luminance and RMS contrast.
Throughout the experiment (4 scans), the subjects were presented with each picture twice. The

lRoot-mean-square (RMS) contrast of an image is the standard derivation of the pixel values expressed in units of Weber contrast. The
Weber contrast of a pixel is defined as (pixel luminance — mean luminance)/(mean luminance).
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pictures used in the experiment were randomly assigned into four groups, which were rendered
at one of four noise levels. The pairing of the four noise levels to the four picture groups was
partially counterbalanced within subjects and fully counterbalanced across subjects using a
Latin Square.2 Trials from each noise level were evenly divided across scans.

For any image noise to be effective in perturbing the later processing stages, the noise must
survive the noise-reduction/signal-enhancement stages in early vision. Noise lacking spatial
correlation can be reduced by averaging, and noise with different spatial scale than the stimuli
can be excluded by filtering. To minimize the removal of the external noise by the visual
system, we used a spatially correlated (or “pink™) noise, the power spectrum of which matched
exactly that of the stimulus. We expected (and verified) that such pink noise survived the
generic noise-reduction steps in the visual system and could effectively affect higher-level
processing. A fresh sample of pink noise was generated for each trial. To prevent the noise
from conveying any task-relevant information, we generated the noise by replacing the
amplitude spectrum of a white noise with the average amplitude spectra of the two pictures
that would be used if the trial were a “different” trial. The resulting pink noise had the same
mean luminance and RMS contrast as the pictures.

Signal and the corresponding pink noise were added in different proportions to form four SNR
levels from 1/9 to 9 in equal log steps. To keep RMS contrast constant for all SNR levels, the
signal and noise were added “on the circle” about the mean luminance. That is, if K/(1 - K)
was the intended SNR and Lq the mean luminance of the signal (and noise), the image used in
the trial would be

image=Lo+ VK(signal — Ly)+ V1 — K(noise — L) (1)

For the LOC localizer scans, we used grayscale noise-free images (250 x 250 pixels or 10.9°
% 10.9°) of novel and familiar objects as well as scrambled versions of each set as described
previously (Kourtzi and Kanwisher 2000). Grid lines were present in both the intact and the
scrambled images. For the localizer scans of the early retinotopic regions, we used rotating
triangular wedge stimuli for the mapping of the borders between visual areas and concentric
rings for eccentricity mapping. All the stimuli compensated for the expanded foveal
representation and consisted of black-and-white checkerboards counter-flicking at a temporal
frequency of 2 Hz as described in previous studies (DeYoe et al. 1996; Engel et al. 1994,
1997; Sereno et al. 1995).

All stimuli were displayed using a gamma-corrected LCD projector (NECGT950). Estimation
of display gamma was obtained using a visual calibration procedure provided in PsychToolbox
(Brainard 1997; Pelli 1997).

Each subject was run in one session consisting of eight scans: two LOC localizer scans, two
localizer scans for the early retinotopic areas, and four event-related scans for the main
experiment. The order of the scans was counterbalanced across subjects.

The event-related scans for the main experiment consisted of one epoch of experimental trials
and two 8-s fixation epochs, one at the beginning and one at the end of the scan. Each scan
consisted of 25 experimental trials for each of the four SNR conditions and 25 fixation trials

2 Latin square is a square matrix consisting of n sets of the numbers 1 to n arranged in such a way that no row or column contains the
same number twice. Using the rows (or columns) of a Latin square to order the n conditions in an experiment across blocks of trials
ensures that each condition appears in each sequential position exactly once (or for equal number of times if repeated).
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that were nonperiodically interleaved with the experimental trials. Each trial lasted for 3 s, and
each stimulus was presented for 300 ms at the beginning of a trial, followed by a blank screen
at mean luminance. As in previous studies (Kourtzi and Kanwisher 2000, 2001), the order of
presentation was counterbalanced so that trials of each condition, including the fixation
condition, were preceded (2 trials back) equally often by trials of each of the other conditions.
Different stimuli were presented across conditions, but all the stimuli were presented in all
conditions across subjects. Subjects were instructed to judge whether the two image panels
presented in a trial were from the same or different scenes. In a “same” trial, both image panels
were taken from the same picture (1 from each side and with their left-right order reversed so
that they were never identical nor spatially aligned—Fig. 1A). In a “different” trial, panels were
taken from different pictures. Behavioral data were recorded during the scans using a response
button box.

For the LOC localizer scans, each stimulus condition (intact and scrambled images of objects)
was presented for four 16-s stimulus epochs with interleaved fixation periods in a blocked
design that balanced for the order of the conditions (Kourtzi and Kanwisher 2000, 2001).
Twenty different images of the same type were presented for each condition. Each image was
presented for 250 ms with a blank interval of 550 ms between images. The subjects were
instructed to perform a 1-back matching task that engaged their attention in all the stimulus
types, i.e., the intact and the scrambled images of objects. For the retinotopic mapping, we used
eight positions for the wedges and eight eccentricity levels for the rings that were presented
each for 8 s and repeated eight times. Subjects were instructed to fixate at the center of the
display and to perform a dimming task on the fixation dot (detect change in fixation color).

For all the experiments, data were collected on the 1.5 T Siemens scanner at the University
Clinic in Tuebingen, Germany. A Gradient Echo pulse sequence (TR =2, TE =40 ms for the
localizer scans; TR = 1s, TE =40 ms for the event-related scans) was used. Eleven axial slices
(5 mm thick with 3 x 3 mm in-plane resolution) were collected with a head coil.

Data analysis

fMRI data were processed using BrainVVoyager 4.6. Preprocessing of all the functional data
included head movement correction, highpass temporal filtering, and removal of linear trends.
The two-dimensional (2D) functional images were aligned to three-dimensional (3D)
anatomical data, and the complete data set was transformed to Tailarach coordinates, inflated,
unfolded, and flattened. For each individual subject, the LOC and the ventral and dorsal
retinotopic areas (V1, V2, V3v/VP, V4, V3d, VV3a) were defined as regions of interest (ROISs).
We restricted these ROIs to voxels significantly activated by our stimuli, based on a 3D
statistical map computed by correlating, for each voxel, the signal time course with a reference
function derived from the hemodynamic response properties (Boynton et al. 1996; Cohen
1997; Dale and Buckner 1997). For each individual subject, the LOC was defined as the set of
continuous voxels in the ventral occipitotemporal cortex that showed significantly stronger
activation (P < 104, corrected) to intact than scrambled images based on the average data from
the two localizer scans. Two subregions of the LOC were identified: the posterior lateral
occipital region (LO) and the anterior regions in the posterior fusiform sulcus (pFs) as described
in previous studies (Grill-Spector et al. 2000). The early visual areas (V1, V2, V3v/VP, V4,
V3d, VV3a) were identified based on standard retinotopic mapping procedures (DeYoe et al.
1996; Engel et al. 1994, 1997; Sereno et al. 1995).

For each event-related scan, the fMRI response (percent BOLD signal change relative to

fixation baseline) was extracted by averaging the data from all the voxels within each of the
independently defined ROIs. In each scan, we averaged the signal intensity across all the trials
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in each condition at each of the 15 corresponding time points (seconds) and converted these
time courses to percent signal change relative to the fixation trials, as described previously
(Kourtzi and Kanwisher 2000, 2001). We then averaged the time courses for each condition
across scans for each subject. Because of the hemodynamic lag in the fMRI response, the peak
in overall response and therefore the differences across conditions are expected to occur at a
lag of several seconds after stimulus onset (Boynton et al. 1996; Cohen 1997; Dale and Buckner
1997). We quantified the peak response in each ROI by fitting a parametric model of the
hemodynamic response function defined by the difference of Gamma functions (Boynton and
Finney 2003; Boynton et al. 1996) to the average fMRI responses across observers. This
analysis showed that the peak BOLD response across conditions and ROIs was within 4-6 s
after stimulus onset. Thus the average response between 4 and 6 s was defined as the peak
response of the fMRI time courses. The BOLD response function was defined as the peak
response versus SNR. The quantity of interest is the log-log slope of the BOLD response
function. The difference in the log-log slope of the BOLD response function across the ventral
visual pathways was tested using ANOVA with ROI (V1, V2, V3v/VP, V4, LO, pFs) as the
within-subject factor and log-log slope as the dependent variable. (Separately, we also tested
along the dorsal pathways: V1, V2, V3d, V3a.) To statistically evaluate if the log-log slope
increased monotonically along a visual stream, we adopted an ordering of the ROIs that
corresponded to the previously proposed processing hierarchy (e.g., Lerner etal. 2001): ventral:
V1-V2—-V3v/VP—V4—LO—pFs, and dorsal: V1—-V2—V3d—V3a. With respect to a
putative ordering, polynomial contrasts (i.e., polynomial regressions between the log-log slope
and the putative ordering of an ROl along a processing stream) were computed for significance
as part of the ANOVA. A significant linear term and the absence of any significant higher-
order terms are indicative of a monotonic trend (Keppel and Wickens 2004). Between-subjects
concordance regarding the rank order of the log-log slopes across ROIs was assessed using
Kendall’s W (Kendall coefficient of concordance). To assess the effect of behavioral accuracy
on the log-log slopes, we also extracted the time courses, the BOLD response functions, and
their log-log slopes separately from correct and incorrect trials. A two-way ANOVA with
correctness (correct vs. incorrect trials) and ROl as within-subject factors and the log-log slope
as dependent variable was performed separately for the ventral and dorsal ROIs.

Over the range of tested SNRs, subjects’ behavioral accuracy increased continuously from 52%
(near chance) to 79% correct as stimulus SNR increased (Fig. 2), indicating that the noise
manipulation was effective in affecting performance [F(3,15) = 26.3, P <0.00001]. In contrast,
subjects’ reaction times (for correct trials) were unaffected by SNR [mean RT = 0.9s, F(3,15)
=1.25,P =0.33].

For all cortical areas where the peak BOLD response varied with SNR, the variation was
monotonic (Fig. 3B). The BOLD response functions of each cortical area, based on either the
time courses from individual subjects or the averaged time course across subjects, showed a
progressive increase in their log-log slopes along the ventral processing stream (Figs. 4, A and
B). A repeated-measures ANOVA applied to the ROIs along the ventral pathway (V1, V2,
V3v/VP, V4, LO, pFs) revealed a highly significant effect of ROI on the log-log slope of their
respective BOLD response functions [F(5,25) = 8.65, P < 0.001].

More importantly, a planned polynomial contrast revealed a monotonic relationship between
the log-log slope of a cortical area and the putative sequential ordering of the area along the

ventral pathway. Specifically, we found a significantly positive linear term [F(1,5) = 15.3, P
< 0.05] and a significantly positive quadratic term [F(1,5) = 13.0, P < 0.05]. No other higher-
order terms were significant. As suggested by Fig. 4B, the quadratic term was due to the noisy
and near-zero log-log slope of V1 and V2, rather than indicating any strong nonmonotonicity.

J Neurophysiol. Author manuscript; available in PMC 2009 June 21.
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Indeed, when either V1 or V2 was excluded from the analysis, the quadratic term vanished,
whereas the linear term remained. Between-subject agreements on the rank order of the log-
log slopes across visual areas were highly significant [Kendall’s W = 0.819, ¥(5) = 24.6, P <
0.001] (Fig. 5). In sum, our data showed that the log-log slope of the BOLD response functions
increased progressively from —0.015 (not significantly different from zero) in V1to 0.22 in
pFs in the ventral stream.

To determine if behavioral accuracy played a role in the observed progression of the log-log
slope of the BOLD response functions along a visual pathway, we extracted the BOLD response
separately for the correct and incorrect trials. Figure 4, C and D, shows the BOLD response
functions obtained and their log-log slopes, respectively. A two-way (ROI x correctness)
repeated-measures ANOVA applied to the ventral ROIs found no significant effect of
Correctness (correct vs. incorrect trials) on the log-log slope of the BOLD response functions
[F(1,5) = 1.08, P = 0.31] even though the log-log slope values from incorrect trials appeared
lower on average (Fig. 4D). There was also no significant interaction between correctness and
ROI [F(5,25) = 1.26, P = 0.31]. The effect of ROI remained highly significant [F(5,25) = 7.42,
P < 0.001], and so was the monotonicity progression of the log-log slopes for both correct and
incorrect trials, in spite of a reduction in reliability for estimating the log-log slopes using the
smaller correctness-contingent data set. When the analysis was limited to the two subregions
in LOC (LO and pFs), where the BOLD response has previously been shown to correlate with
performance (Grill-Spector et al. 2000), the effect of correctness on the log-log slope of the
BOLD response functions exhibited only a trend toward significance [F(1,5) = 5.1, P = 0.07],
and there was no interaction between correctness and ROI [F(1,5) = 0.03, P = 0.86]. In short,
the monotonic increase of the log-log slope of the BOLD response functions along the ventral
pathway remained robust regardless of accuracy in performance.

Interesting, we also observed the same pattern of results along the dorsal pathway (V1, V2,
V3d, V3a) even though our static stimuli and scene-discrimination task were not expected to
optimally engage the dorsal pathway. Briefly, we found a highly significant effect of ROl on
the log-log slope of the BOLD response function [F(5,25) = 7.41, P < 0.01], a monotonic
progression of the log-log slope along the dorsal pathway [significant linear F(1,5) = 10.0, P
< 0.05 and quadratic terms F(1,5) = 8.67, P < 0.05, and the quadratic term vanished when V1
was excluded from the analysis], no effect of correctness on the log-log slopes [F(1,5) = 0.032,
P =0.87] and no interaction between ROI and correctness [F(3,15) = 0.70, P = 0.57].

At the lowest stimulus SNR, objects and scenes were almost invisible, and the images were

devoid of any sharp edges; however, the mean luminance, RMS contrast, and the distribution
of contrast energy across spatial frequencies remained the same as the noiseless originals. It

appears that the BOLD responses in V1/V2 were not contingent on the presence of any form
or edges in the image because the BOLD responses in V1/V2 did not appear to depend on SNR
(V2 showed a nonsignificant negative slope). BOLD responses remained independent of SNR
in V1 and V2 when the analysis was limited to voxels that are closer to the foveal confluence
(average log-log slope was 0.01 for V1 and —0.01 for V2, not significantly different from 0).

Might general attention/arousal differences across conditions modulate the fMRI signals and
result in the differences observed across visual areas? We think that these confounds could not
account for our findings for the following reasons. First, it is highly unlikely that observers
could selectively choose to attend to particular conditions as trials were presented in quick
succession and were randomly interleaved. Second, if the results in the higher visual areas were
simply due to task difficulty, we would expect stronger BOLD responses in the hardest
condition. In contrast, we observed the lowest BOLD responses for the hardest condition.
Third, the reaction times in the hardest condition were statistically indistinguishable from those
in the easiest condition; they would have been faster if the observers had given up and were
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simply guessing. This suggests that observers were engaged in the task across all conditions
and not responding randomly. Fourth, there was no effect of response accuracy (correct vs.
incorrect trials) on the log-log slopes, suggesting that our findings could not be accounted for
by differential attention across conditions depending on the behavioral performance of the
observers.

To control for differences across conditions in eye movements, we measured eye movements
in three subjects in the scanner using an infrared eye tracker with remote optics (ASL 504
LRO). The eye-movement recordings showed no differences across conditions in the mean eye
position [x position: F(3,6) = 0.53, P = 0.68; y position: F(3,6) = 0.94, P = 0.48], the number
of saccades [F(3,6) = 0.70, P = 0.58], the mean saccade amplitude [F(3,6) = 1.80, P = 0.91],
the fixation duration [F(3,6) = 0.71, P = 0.58], and the number of blinks [F(3,6) = 0.40, P =
0.76]. These controls suggest that it is not likely that our results could be significantly
confounded by differences in eye movements across conditions.

DISCUSSION

Our study reports three main findings. First, the observers’ accuracy in the scene discrimination
task increased with increasing stimulus SNR. Second, when stimulus contrast was held
constant, the effect of stimulus SNR on fMRI responses varied across cortical areas. Third,
and most importantly, the dependency of BOLD signal on stimulus SNR varied systematically
along the ventral and dorsal visual streams and appeared to be contingent on the cortical area’s
“distance” from the retinal inputs. Specifically, the further away an area is from retinal inputs,
the more dependent the BOLD signal was on input SNR. The log-log slope of BOLD signal-
change versus image SNR increased progressively: V1/V2 < V3v/VP < V4 < LO < pFs along
the ventral stream, and V1/VV2 < VV3d < VV3aalong the dorsal stream.3 How could such regularity
be explained?

We propose that the progressive increase in the log-log steepness of the BOLD response
function is due to a progressive increase in invariance along the forward direction of a visual
pathway and that increase in invariance is a general property of information processing. Our
theory leads to the intriguing possibility that an external-noise method can be used with fMRI
to index the sequential ordering of cortical regions within an information-processing pathway.
We present this theory next and discuss additional empirical support for it as well as potential
challenges. For clarity, we focus this theoretical discussion on the ventral pathway, as the
stimuli (static images) and task (object/scene discrimination) used in our experiment are
thought to engage primarily processing in the ventral occipitotemporal pathway (Ungerleider
and Mihskin 1995). Given the stimulus complexity (natural images), the fact that we found
similar results in retinotopic areas of the dorsal visual pathway is confirmatory and of interest
for future study.

Sequential ordering of visual processing and the log-log steepness of BOLD versus SNR

Intuitively speaking, the log-log steepness of the BOLD response function is related to the
accumulation of nonlinear decision stages, ordered sequentially, in visual processing. We
formalize this intuition in the context of signal detection theory in four steps. First, we will
present the view that visual processing in the cortex can be seen as a cascade of classifiers.
Second, we will argue that an increase in invariance is a necessary consequence of visual
processing. Third, we will link invariance with the concept of intrinsic uncertainty from the
signal detection theory and describe a relationship between intrinsic uncertainty and the slope

3The < signs represent the monotonic ordering as revealed by the polynomial contrast analysis. They are not meant to suggest significant
pairwise difference, which is a more stringent test of monotonicity.
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of a psychometric function. Fourth, we will relate the “psychometric” function for a population
of neurons to the BOLD response function.

VISUAL PROCESSING AS A CASCADE OF CLASSIFIERS—Visual processing
entails the extraction of “features” from retinal inputs that are relevant to behavior. This feature
extraction process is often thought to be hierarchical, resulting in features that are progressively
more complex, invariant, and task-relevant. The neural correlates for this stage-wise escalation
of feature complexity and invariance seem apparent. In the human ventral cortex, lower (V1,
V2) and higher (V4, LOC) visual areas have been implicated in the analysis of simple and
complex features, respectively. Despite its complex dependence on feedback and recurrent
connections, information processing along the ventral visual stream appears to follow a
discernable order: V1, V2, V3v/VP, V4, and LOC (e.g., Lennie 1998) as suggested by the
anatomical connectivity (Felleman and VVan Essen 1991; Van Essen et al. 1992), response
latency (Raiguel et al. 1989; Schmolesky et al. 1998), neural selectivity for image features
(Hubel and Wiesel 1977; Livingstone and Hubel 1988), and response invariance (Fujita et al.
1992; Grill-Spector et al. 1999; Ito et al. 1995) across visual areas. This succession of neural
stages is consistent with the classical theories of object perception (e.g., Marr 1982) that
propose a cascade of computational stages. Each stage can be described as a classifier that
maps configurations of simpler input features into output categories that correspond to more
complex features.

INVARIANCE AND VISUAL PROCESSING—AIlong the visual processing pathway,
different inputs to a classifier are either mapped to different outputs if the differences are
important for the subsequent stages of analysis or to the same output if the differences are
irrelevant. An edge detector, for example, may distinguish between edges of different
orientations but remain indifferent to the cause of an edge (e.g., whether the edge is an abrupt
change in luminance or in texture). The operations in each classifier can be functionally divided
into two kinds: AND operations, which integrate simpler input features to form a more complex
target feature, and OR operations, which allow for different versions of a target feature. The
AND operator increases feature specificity and complexity, whereas the OR operator increases
feature invariance. This AND/OR structure is evident in the classic models for the analysis of
early visual features (Hubel and Wiesel 1977) and complex objects (Riesenhuber and Poggio
1999).

If we assume that a later stage in visual processing does not undo what has been done by the
earlier stages, then the accumulation of AND and OR operations along a visual processing
pathway means that both specificity and invariance must increase along the pathway. Increase
in invariance, regardless of the specific type of invariance, has a distinct psychophysical
signature, on which we shall elaborate next.

UNCERTAINTY, INVARIANCE AND THE SLOPE OF A PSYCHOMETRIC
FUNCTION—A psychometric function relates performance (e.g., percent correct, d’, hit rate,
etc.) to task-relevant signal intensity (e.g., signal-to-noise ratio, contrast, etc). Here, we will
derive a mathematical link between invariance and the slope of a psychometric function for a
feature detector. Early studies in audition (cf. Green 1964) and vision (e.g., Foley and Legge
1981; Nachmias and Sansbury 1974; Stromeyer and Klein 1974; Tanner and Swets 1954) found
that when a subject was asked to detect a faint but precisely defined signal, the resulting
psychometric function had a slope much steeper than what would be expected of an ideal
observer who knows the signal exactly and who is only limited by internal and external noise.
Tanner (1961) pointed out that if an observer did not know the signal exactly and, therefore
had to consider a number of possibilities, the observer, which was otherwise optimal, would
have a steeper psychometric function similar to those obtained with human subjects. This led
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to the important notion of “uncertainty”—the number (M) of orthogonal signals that an
observer is effectively considering.

Uncertainty relates closely to invariance. Suppose the target in an experiment is one specific
stimulus, but the detector, for whatever reasons, uses a mechanism that responds equally to
any of the M possible stimuli. Such a detector is said to have intrinsic uncertainty (uncertainty
that is not in the stimulus but in the observer) (cf. Graham 1989). Feature invariance is a form
of intrinsic uncertainty. Consider a detector for an object that is invariant to orientation. Such
a detector will respond equally to a target regardless of which way it is orientated. It is as if
the detector is obligatorily considering all admissible versions of the target. Such a detector
will exhibit an amount of intrinsic uncertainty equal to the effective number of orthogonal input
patterns that activate the detector. The notations of “invariance” and “uncertainty,” albeit
different in their historical and theoretical origins, are essentially interchangeable.

Consider a psychometric function that relates hit rate to stimulus SNR for a “yes-no” feature-
detection task. Hit rate is the probability of responding yes when the target feature was present.
There has been at least a 30-yr history of describing a psychometric function with the best-
fitting Weibull function

p©)=1 - (1 - ) exp(-(c/a)) @

where p(c) is the hit rate, ¢ is the input SNR, y the false-alarm rate, o is the threshold (the SNR
required for the hit-rate to reach 63%, or 1 —e 1, of the way between the false-alarm rate and
the asymptotic hit rate), and B is proportional to the log-log slope of the Weibull function at
c=oa.

Based on the findings from a seminal paper by Pelli (1985) on uncertainty, we can show that
B, and hence the log-log slope of the psychometric function of hit rate, is monotonically related
to uncertainty M if we assume that the detector retains a constant level of false alarm rate, o,
independent of uncertainty. Specifically, we show (APPENDIX A) that

B=k®~ (1 — yp)'/™) @)

where k is a proportional constant, and @1 is the inverse of the cumulative normal probability
distribution.

If we assume that the false alarm rate (yg) of a feature detector (e.g., a neuron) is low, then the
false alarm will effectively be a constant because false alarm is lower-bounded by zero. Thus
for a detector with a low false alarm rate, its intrinsic uncertainty M (or equivalently, invariance)
and the log-log steepness B of its psychometric function is monotonically related according to
Eqg. 3, with higher intrinsic uncertainty correlates with higher log-log steepness. Measuring the
log-log steepness of the detector’s psychometric function will therefore provide us with a way
to ascertain the detector’s intrinsic uncertainty.

To link the log-log steepness B to a detector’s intrinsic uncertainty, we required the false alarm
rate yo to be relatively constant across detectors. However, we do not need to assume the same
for the threshold o of the detectors, which depends in part on the specificity and complexity
of the features it tries to detect. a specifies the horizontal position of a psychometric function
along the abscissa of log SNR and is separable from the log-log steepness .

FROM PSYCHOMETRIC FUNCTION TO BOLD ACTIVATION—We adapt the view
that neural activity (e.g., average firing rate) is positively correlated with the presence of a
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target in a neuron’s receptive field; in other words, firing rate in a neurometric function is a
surrogate for hit rate in the corresponding psychometric function.

BOLD signal correlates with neural activities (cf. Heeger and Ress 2002; Heeger et al. 2000;
Logothetis 2002; Logothetis et al. 2001). Whether BOLD signal corresponds to the input or
the output of a cortical region (Logothetis et al. 2001) will not fundamentally affect our analysis
because the inputs to an area are the outputs from the preceding areas, thus the ordinal
relationship remains unchanged. We assume that within a region of interest (ROI), BOLD
signal is related to average “neural activity” (e.g., local field potential, single- and multiunit
activities, etc.) by a power function. This assumption is consistent with data from Logothetis
et al. (2001). We will further assume that, within the ROI, the average “neural activity” is
related to the average hit rate, pa(c), by another power function. These two power functions
can be combined into a single power function, and we have

% A BOLD(c)=g - (p,(c))" ()

where %ABOLD(c), the BOLD response function, is the percent BOLD signal change relative
to fixation baseline as a function of stimulus SNR ¢, and g, h are parameters of the combined
power function. Combining the analytical relationship between uncertainty and the log-log
slope of a single detector’s response function (Eqg. 3) with assumed power-function relationship
between BOLD signal and the average response function of detectors in an ROI (Eq. 4), we
derived (APPENDIX B) a specific relationship between the log-log slope of the BOLD
response function and uncertainty

d(log(%ABOLD _
e 2| =kh® (1 = 9)M)(1 = y) exp(=1)/

(I =1 =y) exp(=D+y(l - /&) (5)

where M is the amount of intrinsic uncertainty (or feature invariance), k is the proportional
constant from Pelli (1985) relating B to the decision criteria A, h is the exponent relating %
ABOLD to hit rate, v is the false alarm of a single neuron, and & is the fraction of neurons in
the ROI that are selective (and responding) to the presented target. k is an analytical constant,
unrelated to biology. We assume that h is roughly constant over the cortex (or at least within
the visual areas). We also assume that the false alarm rate (y) of all neurons is small and similar
(i.e., it does not make sense for a neuron to signal the presence of a target if such signaling was
often erroneous). With these two assumptions, the log-log steepness depends only on the
intrinsic uncertainty (M) and the fraction (&) of neurons responding to the noise-free versions
of the stimuli. The effect of & on the log-log steepness is reduced if the false alarm rate is
sufficiently small or when & is sufficiently large. The later can be assumed for the ROIs where
activity is highly modulated by the stimuli compared with fixation baseline as was the case in
our experiment. Under these considerations, we can state that the log-log steepness of BOLD
response function reflects mainly the intrinsic uncertainty (M), or in other words, the feature
invariance, of a cortical area.

SUMMARY—The analysis can be briefly summarized as follows. Along the forward direction
of a visual processing pathway, feature invariance increases. In the context of signal detection
theory, feature invariance corresponds to the system’s intrinsic uncertainty. Our derivation
shows that across visual areas, an increase in uncertainty leads to an increase in the log-log
steepness (B) of the “psychometric” function of a neural mechanism, which relates the
probability of target detection to the stimulus SNR. With a small set of assumptions, we showed
that an increase in 3 correlates with an increase in the log-log steepness of the BOLD response
function (%ABOLD vs. SNR). We would thus predict that along the forward direction of a
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visual processing pathway, the log-log slope of the BOLD response function must increase,
which is consistent with our empirical findings.

Hierarchical decision cascade with feedback

We linked the log-log steepness of the BOLD response function to the degree of invariance
(intrinsic uncertainty) of the features extracted by a cortical region, and the degree of invariance
to the sequential ordering of cortical region along the “forward” direction of visual processing.
However, reciprocal connections between cortical areas are prevalent (cf. Felleman and Van
Essen 1991; Van Essen et al. 1992) and functionally relevant for visual processing. Because
the information flow is clearly bidirectional, how can one define what is the forward direction?

A forward direction of information processing is defined in terms of how information is being
processed and does not preclude the use of feedback to implement a decision hierarchy. For
example, a forward direction is well defined if the dependency between feature types is
directional—the detection of a contour depends on the detection of some local edge fragments
consistent with the contour, but the detection of an edge fragment need not be consistent with
the presence of a contour. Feedback from a contour-detection stage may modulate the
sensitivity of an edge detector but does not alter its basic function of being an edge detector.
A corollary of this type of dependency is that more than one set of low-level features can signify
the presence of a higher-level feature (e.g., the same contour can be detected based on different
sets of edge fragments). In other words, there is a progressive increase in feature invariance,
in addition to feature complexity, along the forward direction. Our analysis showed that the
log-log steepness of the BOLD response function is monotonically related to feature invariance
and can thus be used to indicate the forward direction of information processing. The advantage
of using the log-log steepness is that we do not need to define any ad hoc metrics for feature
complexity or invariance.

Effects of noise, feature complexity, and contrast

Our main empirical finding is that image-level noise is more effective in disrupting BOLD
activation in higher than lower visual areas. We attributed this to a progressive increase in
invariance (i.e., intrinsic uncertainty) along the ventral pathway. Empirical evidence for an
increase in invariance across image changes along the ventral pathway has already been
established (Fujita et al. 1992; Grill-Spector et al. 1999; Ito et al. 1995). Our contribution is
the theory that links the degree of invariance to the sensitivity of BOLD activation to image-
level noise. This link is general and does not depend on the specific type of invariance, such
as invariance in size or position.

One could argue that the observed effect between image-level noise and BOLD activation is
due to the specific noise we used or related to the specific features the noise happened to disrupt.
It is unlikely that our empirical findings are noise specific. A number of other manipulations
that affect the front-end SNR, such as image scrambling, showed similar results—i.e., a strong
modulation effect on BOLD at the later stages along the ventral pathway (Grill-Spector et al.
1998; Lerner et al. 2001; Rainer et al. 2002). When visual information processing is
conceptualized as a sequence of AND and OR operations as here, both feature specificity (or
complexity) and invariance are expected to increase along a processing pathway. In a
fundamental sense, the alterative explanation, that a highly specialized feature formed at a
higher-level stage is easier to be disrupted by random noise—cannot be completely ruled out.
However, the effect of feature complexity per se on a psychometric or neurometric function is
less specific, making it more difficult to predict a priori its effects on BOLD without additional
assumptions on the type of feature complexity.
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Avidan et al. (2002) showed that the sensitivity to image contrast decreased along the ventral
pathway. This finding appears to contradict our theory. There were two critical differences
between Avidan et al. and the present study. First, Avidan et al. manipulated contrast in the
absence of noise, essentially relying on an observer’s internal noise to limit performance. As
a result, performance could remain high at very low contrast (lowest nonzero contrast tested
in Avidan et al. was 4%). Second, and more importantly, the observers’ accuracy in Avidan et
al. remained relatively constant in all the tested contrast levels except the zero-contrast
condition. For line-drawings, performance often remains >80% correct for a contrast as low
as 2% if no external noise is present (e.g., Tjan et al. 1995). A sharp transition of the BOLD
response in the LOC would therefore be expected if one titrates a narrow range of contrasts
between 0.5-3%. The result would be a steeper log-log slope of BOLD response versus contrast
for LOC and a comparatively much shallower slope for V1—a pattern consistent with our
current results. This abrupt change in the contrast response function followed by saturation
could also be inferred from data in Olman et al. (2004) for extrastriate areas but not for V1. In
general, the log-log slope of interest is the one obtained at threshold SNR (Eqg. 5), where the
slope of the BOLD response function is the steepest.

We note that the log-log slopes of the BOLD response function measured in the same cortical
region (e.g., V1) can be different across different studies. Equation 5 shows that the log-log
slope is affected by the fraction (&) of neurons responding to the noise-free versions of the
stimuli and the false-alarm rate (y). £ depends on the stimuli, whereas y depends on a
combination of the stimulus-level noise and noise internal to the observer. To use the log-log
slope as an index for feature invariance or intrinsic uncertainty (M), we have to assume that
within an experiment, vy is relatively constant across cortical areas, and if y is not adequately
small, & must be sufficiently close to unity. Because the values of & and y vary across
experiments, we do not expect the log-log slopes to stay constant across studies. However,
with respect to our theory, we do expect the ordinal relationship of the log-log slopes between
different cortical areas to be consistent across studies.

Finally, Rainer et al. (2001) used a noise manipulation very similar to ours and showed that
for anesthetized monkeys, BOLD signal varied nonmonotonically with SNR in V1 and
extrastriate areas. This nonmonotonicity was not observed in our data. In Rainer et al., SNR
was manipulated using a simple weighed sum

image=K signal+(1 — K) noise (6)

This manipulation caused RMS contrast to co-vary with SNR, such that at 0 and 100% noise,
the RMS contrast is at maximum, whereas at 50% mixture of signal and noise, the RMS contrast
is at its minimum (Dakin et al. 2002). Since BOLD signal from V1 is known to be sensitive to
contrast (Boynton et al. 1999; Olman et al. 2004; Ress and Heeger 2003; Zenger-Landolt and
Heeger 2003), it is most likely that the nonmonotonicity observed in Rainer et al. is due to a
variation in contrast. In the current study, we manipulated SNR in a manner that ensured
constant RMS contrast across noise levels.

When random visual noise was used to disrupt the retinal input from visual images, its effect
on the BOLD activation of different cortical areas varied systematically along the ventral and
dorsal visual pathways. In particular, the log-log slope of the BOLD response function (%
BOLD signal change relative to fixation baseline versus stimulus SNR) increased
monotonically from early to late visual areas along a visual pathway. An increase in SNR from
1/9 to 9 resulted in little change to the BOLD response in V1/VV2 but caused progressively
larger changes in cortical areas that are further away from the retinal inputs. We adapted the
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analysis of uncertainty from signal detection theory to interpret this systematic change in the
BOLD response function along a visual pathway. We showed that the observed increase in the
log-log slope of the BOLD response function areas along a visual pathway is a general property
of visual information processing—a progressive increase of invariance (or equivalently,
intrinsic uncertainty) along a cascade of classifiers.

External noise methods are powerful tools in vision psychophysics. They provide a quantitative
interpretation of behavioral data at a level of detail that permits computational modeling of the
underlying mechanisms. Here we provide novel evidence that external noise methods can be
used to study the representations of visual scenes along the ventral visual pathway.
Investigating these representations in the light of findings from signal detection theory, such
as the relationship between uncertainty and the log-log slope of a psychometric function,
provides novel insights in understanding the degree of invariance in the features extracted by
different cortical areas without making specific assumptions about what these features are.
Contingent on the validity of a few general assumptions about signal detection theory and the
relationship between neural activity and BOLD signal, this method can also “image” the ordinal
flow of information processing between different cortical areas based on the effects of stimulus
noise on their processing.
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APPENDIX A

In this appendix, we derive the relationship between the log-log steepness (B) of the
psychometric function of hit rate and intrinsic uncertainty (M), under the assumption of a
constant force-alarm rate (yg). We express the psychometric function of hit rate using a Weibull
function

p(©)=1 - (1 —y) exp(—(c/a@)’) (A1)

where p(c) is a hit rate, c is the input SNR, y the false-alarm rate, o is the threshold SNR, and
B is proportional to the log-log slope of the Weibull function at ¢ = a

d(log(p)) |

Tog(@)) eeo P (=M EXp(=D/(1 = (1 =) exp(-1)

c=a (A2)

Pelli (1985) considered a maximum-output model of uncertainty. The model consists of
multiple input channels that are orthogonal, each responds by correlating the input with a
template. The maximum response among all the channels is taken to be the decision variable
of the model. The number (M) of the orthogonal channels is a measure of the intrinsic
uncertainty.

Pelli (1985) showed that the log-log steepness (B) of this model’s psychometric function for
hit rate is proportional to the model’s response criterion (1), which is the threshold that the
model’s decision variable must exceed before the model responds yes. Thus
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B=kA (A3)

where k is a proportional constant. A high criterion will reduce false alarms, but it also reduces
hit rate. Pelli also showed that the false-alarm rate (y) is related to the level of uncertainty
(M) and the response criterion (1)

y=1-oM) (A4)

where @ is the cumulative normal probability distribution. Although Pelli’s derivation was
based on a specific observer model (the maxoutput model), the qualitative relation between
these parameters holds for almost all reasonable models of uncertainty proposed before and
after Pelli (cf. Graham 1989; Green and Swets 1966; Swets 1964), including models that are
optimal in a Bayesian sense (Tjan 1996).

If an observer (or a neuron) wants to maintain a fixed level of alarm false rate, say yo,
independent of uncertainty or invariance, then according to Eqg. A4, the response criterion ()
must increase with uncertainty. Because 3 is proportional to the response criterion (Eg. A3),
it also increases with uncertainty

B=kA=k®~'((1 — yo)'™) (A5)

where @1 is the inverse of the cumulative normal probability distribution.

APPENDIX B

In this appendix, we derive the relationship between the log-log slope of the BOLD response
function (%ABOLD vs. stimulus SNR) and intrinsic uncertainty (M), building on the results
from APPENDIX A and the power-function assumption that links BOLD signal to the average
psychometric function of hit-rate of the feature detectors in an ROI (Eqg. 4 in main text)

% A BOLD(c)=g - (p, (c))" (B1)

Because only a fraction of neurons will be activated by a stimulus, the average hit rate within
the ROl is

P.(©)=Ep(c)+(1 = &)p(0) (B2)

where 0 <& <1 is the relative density of the neurons in the ROI whose target features are in
the (noiseless) stimulus, p(c) is the hit rate for such an individual neuron in the ROI, and p(0)
corresponds to the false alarm rate. The average hit rate can be modeled with a Weibull function
modified such that its asymptote is <1.0. From Egs. Al and B2, we can see that the average
false-alarm rate is the same as that of a single neuron (ya = y), and likewise for the average
threshold SNR (04 = o). If the false-alarm rate is sufficiently low or if £ is sufficiently high,
then the average log-log steepness (Ba) will be roughly the same as that for a single neuron
(Ba = B); otherwise, Ba and B will be linearly related by a factor depending on & and y
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d(log(0)) |, =B (=) exp(=D)/(1 = (1 =) exp(~D+¥(1 = £)/8) -

By combining Egs. A5, B1, and B3, we can relate the log-log steepness of BOLD versus SNR
to the intrinsic uncertainty (M)

d(log(%ABOLD _
UoREABOLDD | k™! (1 )™M )(1 =) exp(-1)/

(I = =y)exp(=D+y(1 - /&) (B4)

where k is the proportional constant from Pelli (1985) in Eq. A5 relating p to the decision
criteria A, h is the exponent relating %ABOLD to every hit rate, v is the single-neuron false
alarm rate, and M is the amount of intrinsic uncertainty (or feature invariance).
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FIG. 1.

Sample stimuli for “same” (A) and “different” (B) trials. Even in the same trials, the left and
right panels were never identical but were pictures taken from the same scene. C: pink noise
was generated by replacing the phase spectrum of a scene by the phase spectrum of white noise.
The signal-to-noise ratio (SNR) of a stimulus was manipulated by adding a pink noise pattern
to a noise-free image “on the circle” about the mean luminance such that both the mean
luminance and the RMS contrast of the resulting image was unaffected by SNR.
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FIG. 2.

Accuracy and reaction times collected during scanning averaged across all subjects, weighed
by the number of valid responses (the response box failed in one run for 1 subject). Average
accuracy increased as a function of SNR, from an average of 52% at SNR = 0.11 to 79% at
SNR =9.0. Thin gray curves depict accuracy for individual subjects. Average reaction times
for correct trials remained at a relatively constant level (0.9 s), unaffected by SNR. Error bars
represent standard error of the mean.
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FIG. 3.

Cortical map (A) from 1 subject showing the measured regions of interest (ROIs). The ROIls
considered in the study were V1, V2, V3d, V3a, V3v/VP, V4, and 2 subregions of the LOC:
lateral occipital cortex (LO) and the posterior fusiform sulcus (pFs). B: time courses of the
blood-oxygen-level-dependent (BOLD) response (% BOLD signal change from fixation
baseline) averaged across subjects illustrate the interaction between stimulus SNR and ROI.
The modulation of the BOLD response by stimulus SNR increased from posterior (V3d, V3v/
VP, V4) to anterior ROIs (V3a, LO, pFs). There was no noticeable effect of SNR on BOLD
response in V1 and V2.
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FIG. 4.
The BOLD response functions (average peak % BOLD signal change from fixation baseline

vs. stimulus SNR) from the 8 ROIs derived from the average time courses of Fig. 3 are plotted
in log-log axes (A). The progressive increase in the log-log slope of the BOLD response
functions (B) along the ventral and dorsal visual pathways were confirmed by within-subject
ANOVA and planned polynomial contrasts (see text). The BOLD response functions (C) and
their log-log slopes (D) were also derived separately from the correct and incorrect trials. There
was no statistically significant effect of response correctness on the log-log slopes, nor was
there any interaction between behavioral correctness and ROI (see text). Error bars represent
within-subject SE (Loftus and Masson 1994).
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