Current Biology 78, 1162-1167, August 5, 2008 ©2008 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2008.06.072

Report

Experience Shapes the Utility

of Natural Statistics

for Perceptual Contour Integration

D. Samuel Schwarzkopf' and Zoe Kourtzi'-*
1School of Psychology

University of Birmingham

Edgbaston, Birmingham B15 2TT

United Kingdom

Summary

Segmenting meaningful targets from cluttered scenes is
a fundamental function of the visual system. Evolution and
development have been suggested to optimize the brain’s
solution to this computationally challenging task by tuning
the visual system to features that co-occur frequently in
natural scenes (e.g., collinear edges) [1-3]. However, the
role of shorter-term experience in shaping the utility of scene
statistics remains largely unknown. Here, we ask whether
collinearity is a specialized case, or whether the brain can
learn to recruit any image regularity for the purpose of target
identification. Consistent with long-term optimization for
typical scene statistics, observers were better at detecting
collinear contours than configurations of elements oriented
at orthogonal or acute angles to the contour path. However,
training resulted in improved detection of orthogonal con-
tours that lasted for several months, suggesting retuning
rather than transient changes of visual sensitivity. Improve-
ment was also observed for acute contours but only after
longer training. These results demonstrate that the brain
flexibly exploits image regularities and learns to use discon-
tinuities typically associated with surface boundaries (or-
thogonal, acute alignments) for contour linking and target
identification. Thus, short-term experience in adulthood
shapes the interpretation of scenes by assigning new statis-
tical utility to image regularities.

Results and Discussion

We investigated the role of short-term experience in shaping
the ability of the visual system to capitalize on image regular-
ities for the identification of targets in cluttered scenes. Previ-
ous studies have shown that learning enhances the ability of
observers to detect targets in noise [4-15]. However, the im-
age statistics of the stimuli employed in previous work are
consistent with regularities that typically define contours in
natural scenes (e.g., collinearity, cocircularity) and for which
the visual system is potentially optimized through evolution
and development [1-3]. In contrast, to investigate the role of
short-term learning in the optimization of visual recognition
processes, we chose stimuli that violate these prevalent
principles of contour linking.

In particular, we tested whether learning enhances the ability
of naive observers to detect contours (Figure 1, Figure S1
available online) that were embedded in noise (i.e., back-
ground of randomly oriented Gabor elements) and defined
by three different regularities. That is, the Gabor elements
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defining the contours were aligned either (1) along the contour
path (collinear contours), (2) orthogonally to the path (orthog-
onal contours), or (3) at an acute angle to the contour path
(acute contours). Although these contour types contain the
same amount of image regularities (aligned local elements)
as shown by the analysis of local co-occurrence statistics (Fig-
ure 1, Supplemental Data), they are thought to typically serve
different purposes in the interpretation of natural scenes.
Whereas collinear alignments signify highly probable continu-
ities that have been suggested to mediate contour integration,
parallel elements oriented at an angle to contour paths (or-
thogonal, acute) are more likely to indicate discontinuities
(i.e., texture boundaries) that serve as a cue for surface seg-
mentation rather than contour integration [1, 2, 16-18]. Our
findings show that the visual system learns to use discontinu-
ities (orthogonal, acute alignments) for contour linking,
providing evidence that short-term experience boosts the
observers’ ability to detect camouflaged targets by shaping
the behavioral relevance (i.e., utility) of image statistics.

Specifically, observers (n = 14) judged which of the two stim-
uli presented successively in a trial contained contours (collin-
ear, orthogonal, acute) rather than only random elements (two-
interval forced choice task). We manipulated the alignment of
the local Gabor elements with respect to the mean orientation
by introducing orientation variability at the local elements
(orientation jitter). Consistent with previous studies [19-23]
providing evidence for the strength of collinearity as a cue
for contour integration in natural scenes, our measurements
showed that before training observers were more sensitive
to collinear than to orthogonal or acute alignments. Only after
training was the observers’ sensitivity to the regularities pres-
ent in orthogonal stimuli enhanced and their performance in
detecting contours similar for orthogonal and collinear stimuli
(Figure 2A, Figure S2 for individual subject psychometric
curves). In particular, before training, observers’ accuracy for
collinear contours was high for low-orientation jitter and
decreased progressively with increasing orientation jitter,
consistent with the orientation co-occurrence statistics
(Figure 1B). In contrast, performance on orthogonal and acute
contours was not significantly different from chance across all
orientation jitters. Importantly, training the observers (n = 14)
on the detection of orthogonal contours with feedback
resulted in increased accuracy (Figure 2A) and decreased
response times (Figure S3). Similar learning effects for
orthogonal contours were observed when the three contour
types were tested with either a blocked (Figure 2A, n = 14) or
interleaved (Figure S4A, n = 5) design controlling for task-re-
lated strategies and suggesting training-dependent changes
in the visual sensitivity for orthogonal contours.

We quantified improvement on the contour detection task
during training by two measures: accuracy (percent correct)
at zero local orientation jitter, and the orientation jitter at
68% correct performance (threshold) fitting a logistic function
(Supplemental Data). Accuracy and threshold measurements
increased across training sessions (Figure S5) and were
significantly higher after than before training. In contrast,
performance for untrained contour types (collinear, acute)
did not change significantly with training. In particular,
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Figure 1. Stimulus Conditions

(A) Examples of stimuli: collinear contours (elements aligned along the con-
tour path), orthogonal contours (elements oriented at 90° to the contour
path), and acute contours (elements oriented at 30° to the contour path).
For demonstration purposes, Figure S1 shows the same stimuli with the
contrast of the background elements reduced. Contours oriented at 45°
are shown as example. Local orientation co-occurrence statistics for Gabor
elements and their nearest neighbors were calculated by vectorial addition
(Supplemental Data). These statistics for each stimulus condition are de-
picted by polar plots to the right of the stimulus examples. The plots
show the probability of the same orientation appearing in the vicinity of
each Gabor element (reference) in each of the three stimulus conditions
compared to the random stimuli. Polar angles depict the location of neigh-
boring Gabor elements relative to the orientation of the reference element.
The radial axis indicates the relative probability that elements of the same
orientation are found in this location at different orientation jitters (grayscale
coded: colors from dark to light gray indicate 0°-45° orientation jitter).

(B) Amount of information present in stimuli containing collinear (circles), or-
thogonal (squares), and acute (triangles) contours. The probabilities of local

arepeated-measures ANOVA showed a significant interaction
(accuracy, Fq 7,202 =61.2, p < 0.001; threshold, F1 4,157 =106.1,
p < 0.001) between stimulus (collinear, orthogonal, acute con-
tours) and session (pre-, post-test). Figure 3 shows learning
effects for individual observers by plotting accuracy at zero
orientation jitter before training against accuracy after training.
Accuracies for orthogonal contours are shifted to the left of the
equidistant line (diagonal), consistent with improved perfor-
mance after training, whereas accuracies for collinear and
acute contours are clustered along the diagonal, consistent
with the lack of significant learning transfer for these contour
types. The lack of improvement for acute or collinear contours
after training on orthogonal contours suggests that the
improvement for orthogonal contours could not be simply
due to practice with the task or exposure to the stimuli during
the two test (pre-, post-test) sessions. Further support for this
comes from a control experiment (Figure S6A, n = 3) that
showed no differences in the detection of orthogonal contours
when observers were tested on the two test sessions but did
not receive any training in between the test sessions.

Interestingly, this learning effect for orthogonal contours
lasted for a prolonged period. For observers tested 3-5
months (Figure 2B, n = 6) and again 6-8 months (Figure S4B,
n = 4) after training, improvement in the detection of orthogo-
nal contours was maintained despite the fact that observers
had no additional exposure to these stimuli. These results
suggest that the lasting learning effects for orthogonal con-
tours are related to the optimization of perceptual integration
processes through experience rather than reflecting simply
transient changes in visual sensitivity. Further, similar learning
effects were observed when observers (n = 5) did not receive
feedback on their responses during training (Figure 2C, unsu-
pervised training). Training resulted in improved performance
for orthogonal contours but not collinear or acute contours
across sessions (Figure S5), as indicated by a significant
interaction of stimulus and session for the 68% threshold
(F1.4,5.7 =13.6, p < 0.01). These results suggest that behavioral
improvement may occur without external feedback as when
observers search for camouflaged objects in natural scenes,
consistent with previous studies [12, 24] showing that
the visual system learns in an opportunistic manner by capital-
izing on spatiotemporal correlations. The role of task and
feedback in learning remains a controversial issue [25] and
future work is needed to investigate whether learning occurs
when observers are repeatedly exposed to orthogonal con-
tours while performing a task that does not require contour
detection.

Finally, we compared the effects of training on orthogonal
contours with training on collinear or acute contours. Training
on collinear contours (n = 3) showed a slight increase in detec-
tion performance but lack of transfer to the other contour types
(Figure S6B). This may reflect saturation in detection perfor-
mance, because observers were already good at detecting
collinear contours before training. In contrast, after training
on acute contours (n = 7) with elements at 30° or 45° angle to
the contour path (Figure 4), performance improved across
sessions (regression slope: 2.56, R% = 0.53, p < 0.001). How-
ever, learning to detect acute contours required longer training
(5400 trials); that is, detection performance after training on
acute contours for the same time (1800 trials) as for orthogonal

orientation co-occurrence were fitted with a Gaussian and the amplitude of
this fit is plotted across orientation jitters and fitted with a logistic psycho-
metric function (lines).
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Figure 2. Training on Orthogonal Contours
Psychometric curves (average across observers)
for contour-detection performance (percent
correct) plotted as a function of local orientation
jitter.

(A) Performance for observers (n = 14) before
(pretest, left) and after (post-test, right) training
on orthogonal contours with feedback. There
was a significant improvement in performance
for orthogonal contours (Fi13 = 300.3, p <
0.001), but not for collinear (F1 13 <1, p = 0.79)
or acute (Fy,13 = 2.9, p = 0.11) contours.

(B) Performance for observers (n = 6) trained on
orthogonal contours with feedback and tested
immediately after training (left) and 3-5 months
later (right). There was no significant difference
in performance between the post-test immedi-
ately after training and the second post-test
3-5 months after training (accuracy, Fy15 < 1,
p = 0.48; threshold, Fy 5 <1, p = 0.71).

(C) Performance for observers (n = 5) before (pre-
test, left) and after (post-test, right) training on or-
thogonal contours without feedback. Training re-
sulted in significant improvement in the detection
threshold for orthogonal contours (F;4 = 12.9,
p < 0.05) but not for collinear (F1 4 <1, p = 0.61)
or acute (F4 4 = 0) contours.

Circles, collinear contours; squares, orthogonal
contours; triangles, acute contours. Error bars
denote *1 standard error of the mean across
observers.

orthogonal contours into two groups
based on their pretraining performance:
subjects with low pretest levels (accu-
racy at zero jitter below 60% correct)
(n = 12) and subjects with high pretest
levels (accuracy at or above 60% cor-
rect) (n = 11). No significant differences
were observed in detection perfor-
mance after training between groups
(t(21) = 0.86, p = 0.40). This result was
confirmed by the lack of a significant
correlation (R = 0.26, p = 0.24) between
the pre- and post-training data of ob-
servers trained on orthogonal contours.

contours (n = 3) was significantly weaker than performance
after training on orthogonal contours (t(15) = 7.0, p < 0.001).
Could the prolonged training necessary for learning acute
compared to orthogonal contours be due to differential sensi-
tivity for these contour types before training? In a total of 38
observers tested across experiments in our study, detection
accuracy for orthogonal and acute contours did not differ sig-
nificantly before training (orthogonal, 56.9% =+ 2.9%; acute,
53.3% =+ 4.9%, t(74) = 1.5, p = 0.13). However, previous studies
have reported higher detection performance for orthogonal
than acute contours [23] and better detection performance
for orthogonal contours than that observed in our study [19-
23]. Unlike previous studies that were conducted on experi-
enced observers, we tested naive participants. Previous
experience with the stimuli may have resulted in enhanced
performance for orthogonal contours in these studies, consis-
tent with the training-dependent improvement we observed.
Further analyses showed that variability in performance before
training did not have a significant effect on the outcome of
training. We split the data from observers trained on

Taken together, these results suggest that the behavioral im-
provement for contour detection reported in our study reflects
training-dependent changes in visual sensitivity for image reg-
ularities (i.e., orthogonal, acute alignments) rather than differ-
ential task difficulty for the detection of these contour types.
In summary, our findings provide novel evidence that learn-
ing shapes the utility of image regularities for the detection of
contours in cluttered scenes. Although collinearity is a preva-
lent principle for perceptual integration in natural scenes, we
show that the brain learns to exploit other image regularities
(i.e., orthogonal and acute alignments) that typically signify
discontinuities for contour linking. What is the neural basis of
this experience-dependent optimization of perceptual integra-
tion processes? Recent neurophysiological studies propose
that learning may support efficient target detection [26] by en-
hancing the salience of targets through increased correlation
of neuronal signals related to the target features and decorre-
lation of signals related to target and background features [25,
27]. Recurrent processing involving intrinsic connections and
feedback from higher visual areas [11, 25, 28-30] has been
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Figure 3. Training on Orthogonal Contours: Individual Observer Data

Accuracy (percent correct) at zero orientation jitter after training is plotted
against accuracy before training for individual observers trained on orthog-
onal contours. Blue circles, collinear contours; red squares, orthogonal
(trained) contours; green triangles, acute contours. Dark colors indicate ac-
curacy for training with feedback, and lighter colors indicate accuracy for
training without feedback.

suggested to modulate perceptual integration and figure-
ground segmentation as early as in V1 [31, 32]. Experience-de-
pendent plasticity in these circuits may result in retuning of
neural sensitivity to contours defined by discontinuities.
Interestingly, our findings show that longer training is neces-
sary for acute than for orthogonal alignments. Previous studies
showing center-surround interactions beyond the classical re-
ceptive field of V1 neurons [33-37] provide insights in under-
standing these differences in the integration of parallel local
elements to global contours. Numerous studies suggest that
these center-surround interactions are complex and may
vary from facilitatory to inhibitory depending on contrast and
context (for reviews [30, 38-40]. A possible scenario offered
by this previous work is that facilitatory interactions along
the neurons’ preferred orientation may support collinear
correlations, whereas inhibitory interactions along an axis or-
thogonal to the cell’s preferred orientation may relate to decor-
relation of signals in texture boundaries and surface segmen-
tation [2]. Thus, it is possible that orthogonal alignments are
more effective cues for segmentation than acute ones be-
cause of potentially stronger center-surround modulations
for elements at right than at acute angles to the neurons’ pre-
ferred orientation. In line with this interpretation, a previous
study showing poor performance for experienced observers
in the detection of acute contours [23] suggests that the asso-
ciations linking edges into contours are weaker for acute than
for collinear or orthogonal alignments. We demonstrate that
the visual system is able to exploit acute alignments for con-
tour linking through learning, potentially by enhancing these
weak associations. However, in naive observers, longer train-
ing is necessary for boosting these weak associations and de-
tecting acute contours in cluttered scenes than the amount of
training sufficient for detecting orthogonal contours. Although
previous studies on edge co-occurrence statistics suggest
similar probability of occurrence for different types of parallel
alignments (orthogonal, acute) in natural scenes [2, 16], further
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Figure 4. Training on Acute Contours

Detection performance for observers trained with feedback for 5400 trials
on acute contours (n = 3 for acute contours with elements at 30° angle, light
gray symbols; n = 4 for acute contours with elements at 45°, dark gray
symbols). Symbols denote performance at zero orientation jitter. Mean
accuracy (percent correct) across all observers (black solid line) is shown
for each session (pre, pretest; post, post-test; numbered training sessions).
Error bars denote +1 standard error of the mean across observers.

work is needed to investigate whether the behavioral and neu-
ral bias for orthogonal contours relate to higher-order statis-
tics in textures [23]. It is possible that prolonged training is
necessary for stronger improvement when learning to exploit
these statistics for contour linking, similar to the extensive ex-
posure necessary for the recalibration of visual processing in
cases of atypical input (e.g., distortions or visual field reversal
[41, 42]).

Conclusions

Evolution and long-term experience during development [1-3,
9, 40] have been suggested to shape the neural architecture of
the visual cortex in a manner that resembles the geometry of
natural scenes and supports the integration of collinear edges.
Here, we provide evidence that experience at shorter time
scales in adulthood plays an important role in the functional
optimization of the visual system for the perceptual interpreta-
tion of natural scenes. We show that learning enhances the
ability of the observers to detect targets in cluttered scenes
whose local statistics do not typically signify contours in the
natural environment. These findings suggest that experience
shapes the interpretation of natural scenes by retuning the util-
ity of image regularities to support the perceptual integration
of contours. That is, the visual system learns to capitalize on
statistical regularities in the visual input. Similar experience-
dependent mechanisms may contribute in the first place, dur-
ing the early postnatal period, to the enhanced perceptual
salience of collinear contours that appear frequently in natural
scenes and are therefore reinforced in natural environments.

Experimental Procedures

Participants

A total of 38 observers (mean age, 23.8 + 0.6 years; range, 18-34 years)
participated in the study. Each observer participated in only one of the ex-
periments and none of the observers had previous experience with contour
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integration experiments. All observers had normal or corrected to normal vi-
sion and gave written informed consent, and the study was approved by the
local ethics committee.

Stimuli

Stimuli were Gabor fields comprising 200 elements presented within a circu-
lar aperture (8° of visual angle in diameter) (Figure 1, Figure S1) and rendered
on an equiluminant gray background (mean luminance = 17.5 cd/m?). The
effective width of the Gabor patches was 0.35° of visual angle. Target stimuli
contained five parallel contours that were defined by Gabor elements
placed along straight paths and were embedded in a background of ran-
domly positioned and oriented Gabor elements.

We generated stimuli for three different conditions (Figure 1) defined by
the mean orientation of the local elements with respect to the orientation
of the contour: Gabor elements could be aligned either along the contour
path (collinear contours), perpendicular (orthogonal contours), or at an an-
gle of 30° or 45° (acute contours). All contours in a stimulus had the same
global orientation that varied between 15° and 165° (12.25°-169.75°, when
training on acute contours with 45° element alignment), in increments of
30° (22.5°) excluding cardinal orientations across stimuli. We also generated
random stimuli that were created by shuffling the local orientations of all the
elements in the field. That is, for every stimulus in each condition (collinear,
orthogonal, acute), we generated a shuffled stimulus. Further details on
stimulus generation are reported in the Supplemental Data.

Procedure

Observers completed two psychophysical test sessions, one prior to train-
ing (pretest) and one after training (post-test). During training, observers
completed 3-5 sessions (i.e., 1800-3000 trials) for training on orthogonal
and collinear contours, and 9 sessions (i.e., 5400 trials) for training on acute
contours. In both test and training sessions, observers performed a two-in-
terval forced choice (2IFC) contour detection task. In test sessions, perfor-
mance for all three contour types was tested and observers completed 540
trials per session (i.e., 36 trials per level of orientation jitter and stimulus con-
dition). In training sessions, observers were trained on one of the three con-
tour types for 600 trials per session (120 trials per orientation jitter level). Dif-
ferent groups of observers were trained on different contour types. More
details are included in Supplemental Data.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures and six
figures and are available at http://www.current-biology.com/cgi/content/
full/18/15/1162/DC1/.
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