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First published March 5, 2008; doi:10.1152/jn.01307.2007. Extensive
psychophysical and computational work proposes that the perception
of coherent and meaningful structures in natural images relies on
neural processes that convert information about local edges in primary
visual cortex to complex object features represented in the temporal
cortex. However, the neural basis of these mid-level vision mecha-
nisms in the human brain remains largely unknown. Here, we examine
functional MRI (fMRI) selectivity for global forms in the human
visual pathways using sensitive multivariate analysis methods that
take advantage of information across brain activation patterns. We use
Glass patterns, parametrically varying the perceived global form
(concentric, radial, translational) while ensuring that the local statis-
tics remain similar. Our findings show a continuum of integration
processes that convert selectivity for local signals (orientation, posi-
tion) in early visual areas to selectivity for global form structure in
higher occipitotemporal areas. Interestingly, higher occipitotemporal
areas discern differences in global form structure rather than low-level
stimulus properties with higher accuracy than early visual areas while
relying on information from smaller but more selective neural popu-
lations (smaller voxel pattern size), consistent with global pooling
mechanisms of local orientation signals. These findings suggest that
the human visual system uses a code of increasing efficiency across
stages of analysis that is critical for the successful detection and
recognition of objects in complex environments.

I N T R O D U C T I O N

Despite the ease with which we identify objects in complex
environments, the computation of meaningful global forms
from local image features on the retina is a challenging task for
the visual system. A network of visual areas with selectivity for
features of increasing complexity has been implicated in this
task: local image features (e.g., position, orientation) are pro-
cessed in primary visual cortex, whereas complex shapes and
object categories (faces, bodies, places) are represented to-
wards the end of the visual pathway in temporal cortex (Felle-
man and Van Essen 1991; Grill-Spector and Malach 2004;
Reddy and Kanwisher 2006; Ungerleider and Mishkin 1982).
However, the intermediate level mechanisms that the human
brain uses for converting information about elementary fea-
tures from V1 into selectivity for complex shapes in the
temporal cortex remain largely unknown.

Previous psychophysical and computational studies propose
that mid-level vision mechanisms mediate shape perception by
combining the output of local orientation detectors to higher-
order features (Barlow and Olshausen 2004; Geisler et al.
2001; Wilson and Wilkinson 1998). Testing this prediction

entails studying the neural code (i.e., selectivity) for features of
increasing complexity across stages of visual analysis. How-
ever, studying neural coding in the human brain is limited by
the spatial resolution of conventional brain imaging approaches
that average across neural populations with differential selec-
tivity. Here, we trace selectivity for global forms in the human
visual cortex using advanced multi-voxel pattern methods for
functional MRI (fMRI) data analysis (Cox and Savoy 2003;
Haynes and Rees 2006; Norman et al. 2006). These methods
take advantage of information across brain patterns and allow
us to discern selectivity for features that are encoded at a higher
resolution (small-scale neural populations) than the typical size
of fMRI voxels We exploit the sensitivity of these methods to
discern selectivity for global form structure beyond selectivity
for elementary features (e.g., orientation, position) across hu-
man visual areas.

We use Glass patterns (Glass 1969; Glass and Perez 1973),
a class of stimuli that evoke the perception of global forms
(concentric, radial, translational patterns) when the orientation
of local dot pairs (dipoles) is consistent with a geometric rule
(e.g., rotation, expansion, translation; Fig. 1A). Using Glass
patterns for tracing the neural code for global forms allows
controlled variations of global structure (e.g., concentric, ra-
dial, translational) while keeping the local stimulus statistics on
average the same across stimuli. Despite extensive behavioral
work on Glass patterns, little is known about the neural
mechanisms that mediate their processing across stages of
visual analysis. Previous neurophysiological studies (Smith
et al. 2002, 2007) have concentrated on the local integration of
dot pairs into oriented dipoles in V1 and V2. We focus on the
neural basis of the integration of orientation signals to global
forms in the human brain. We test the hypothesis that the
perception of global form in Glass patterns is mediated by
selectivity for higher-order (global structure) features in oc-
cipitotemporal areas that pool local orientation signals from
early visual areas. We provide novel evidence that a continuum
of form integration processes in the human visual cortex
contributes to the perception of global form in Glass patterns:
from local orientation analysis in early visual areas to the
processing of global configurations in higher occipitotemporal
areas critical for the perception of shapes and complex objects.

M E T H O D S

Observers

Eleven students from the University of Birmingham participated in
the experiments (6 males and 5 females; median age, 27 yr; age range,
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22–32 yr). Eight observers participated in each experiment (5 observ-
ers performed both experiments). All observers had normal or cor-
rected to normal vision and gave written informed consent, and the
study was approved by the local ethics committee.

Stimuli

GLASS PATTERNS. Four different stimulus pattern types defined by
dot dipoles were used in the experiments (Fig. 1A): concentric, radial,
translational, and random. White dots were presented on a black
background (100% contrast), the dot density was 0.4% and the Glass
shift (distance between dots in a dipole) was 14 arc min. These
parameters were chosen based on pilot psychophysical studies and in
accordance with previous studies (Wilson and Wilkinson 1998). Dot
dipoles were generated by creating a pattern of randomly placed dots
and pairing each dot in this seed pattern with a partner dot that was
shifted based on a particular geometric rule (Glass 1969; Glass and
Perez 1973). A new seed pattern was used for each stimulus presented
in a trial, resulting in stimuli that were locally jittered in their position.
In particular, in experiment 1 for each stimulus pattern type, we
generated 100 unique stimuli starting from a new seed pattern (i.e.,
random dipole pattern) for each stimulus. All stimuli were displayed
within a circular aperture of 10.8° visual angle. For the translational
Glass patterns, all dipoles were rotated to the same orientation in steps
of 18° from 0 to 180°, i.e., 10 stimuli per orientation (100 translational
stimuli). We generated the concentric and radial Glass patterns by
placing dipoles tangentially (concentric stimuli) or orthogonal (radial
stimuli) to the circumference of an ellipse (eccentricity: 0.77) centered
at the fixation dot. To match the 10 orientations used for the transla-
tional Glass patterns, the major axis of the ellipse was oriented

between 0 and 180° in steps of 18° resulting in 10 stimuli for each of
the 10 axis orientations (100 concentric, 100 radial stimuli). For the
random patterns, we assigned a random orientation between 0 and
180° to each dipole (100 random stimuli). Evaluating the distributions
of the orientations of the dot dipoles (Fig. S11) showed similar
orientation profiles across all patterns (e.g., mean and SD: concentric,
90.05 � 51.97°; radial, 90.07 � 51.97°; translational, 81 � 54.49°;
random, 89.6 � 51.84°; see Fig. S1 for additional parameters). A
hyperbolic Glass pattern (generated by inverting the local orientation
rule for the concentric stimulus) was used as the target for the
detection task performed by the observers during scanning in exper-
iment 1.

In the control experiment (experiment 2), we tested three stimulus
conditions (random 1, random 2, and random 2–90°) and generated 80
stimuli per condition. For condition random 1, we generated 80
stimuli with random dot dipole positions displayed within a circular
aperture of 10.8° visual angle. To generate stimuli for condition
random 2, for each stimulus in condition random 1, we fixed one of
the two dots of each dipole and rotated the other randomly between 0
and 180° around the first dot. That is, the stimuli in conditions random
1 and random 2 had the same distribution of orientations but differed
in the local position and orientation (90° in average) of the dot dipoles.
To generate stimuli for condition random 2–90°, for each stimulus in
condition random 2, we fixed one of the two dots of each dipole and
rotated the other one clockwise by 90°. Thus stimuli in this condition
(random 2–90°) and condition random 2 differed at the position and
local orientation of the dot dipoles by 90°. Note that the 90° orienta-
tion difference in the random conditions is the same as the local

1 The online version of this article contains supplemental data.
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Glass pattern responsive regions (GPRRs)

t(10677)      5                             7     p(Bonf ) < 0.05

FIG. 1. Stimuli and functional activation maps. A: examples of the different Glass pattern types (concentric, radial, translational) and the random dot dipole
patterns used as stimuli. B: functional activation maps showing the regions of interest: retinotopic areas (black outline) and the lateral occipital complex (LOC)
and its subregions (LO, lateral occipital; pFs, posterior fusiform sulcus) (red outline) defined based on the overlap of functional activations and anatomical
structures, consistent with previous studies (Grill-Spector et al. 2000). Cortical activation maps based on group data analysis indicate the Glass pattern responsive
regions (GPRRs): dorsal in the occipital cortex and inferior to V3a (dGPRR), ventral lateral in the occipitotemporal cortex (vlGRRR), and ventral medial in the
occipitotemporal cortex (vmGPRR). These regions showed significantly higher activation for Glass patterns than random patterns (P � 0.05, Bonferroni
corrected). None of all other possible GLM contrasts (e.g., concentric vs. radial, concentric vs. translational, radial vs. translational) yielded significant activations
at corrected statistical thresholds. Functional activation maps are superimposed on flattened cortical surfaces of the right and left hemispheres of one observer.
Sulci are shown in dark gray and gyri in light gray. Major sulci are labeled: STS, superior temporal sulcus; ITS, inferior temporal sulcus; OTS, occipitotemporal
sulcus; IPS, intraparietal sulcus.
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orientation difference between concentric and radial Glass patterns.
Evaluating the distributions of the orientations of the dot dipoles (Fig.
S1) showed similar orientation profiles across all patterns (e.g., mean
and SD: random 1, 89.5 � 51.7°; random 2, 89.7 � 52.2°; random
2–90°, 91.1 � 51.8°).

Design and procedure

EXPERIMENT 1. Concentric, radial, translational, and random stimuli
were presented in blocks of 16 s (blocked fMRI design). In each
block, 20 different stimuli of one type (concentric, radial, translation,
random) were presented, each with a different random arrangement of
dot pairs. Stimuli in each block were randomly sampled twice from
the 10 orientations for each stimulus type. That is, 80 of a total of 100
unique stimuli per stimulus type were randomly sampled and pre-
sented per run. This design ensured that differences in the fMRI
responses across stimulus types could not be attributed to differential
adaptation effects related to stimulus repetition. Furthermore, local
adaptation across stimuli was controlled and equated across stimulus
conditions by generating each stimulus based on a different seed
pattern and introducing different global orientation axes across stim-
uli. Finally, this variability in the local structure of the stimuli for each
condition, ensured that classification of stimulus categories from
fMRI data could not be simply achieved based on stimulus regularities
that could have formed if the same limited set of stimuli was presented
repeatedly.

Each stimulus was presented for 332 ms followed by a 468-ms
fixation interval (trial onset asynchrony 800 ms). Each observer was
scanned on eight experimental runs. Each run lasted 5.6 min and was
comprised of the four stimulus conditions four times each in coun-
terbalanced order and five fixation blocks (1 block in the beginning of
each run, 1 in the end, and 3 interleaved after every set of 4
experimental blocks). Observers were instructed to fixate a central
fixation dot and performed a target (hyperbolic pattern) detection task
by pressing a button. The target stimulus was presented on average
twice per 16-s block. This task ensured that observers maintained
attention to the global configuration of the stimuli across all experi-
mental conditions.

EXPERIMENT 2. We used a similar blocked design as in experiment
1 with three stimulus conditions: random 1, random 2, and random
2–90°. In each block, 20 different stimuli of one type were randomly
sampled without replacement; that is, all 80 stimuli for each condition
were shown per run (4 blocks per condition). The observers fixated
and performed a target (translational pattern) detection task, i.e., they
detected a translational pattern that was presented at randomly sam-
pled orientations (0–180°). Fixation epochs were confined to the
beginning and the end of each experimental run.

MRI data acquisition

The experiments were conducted at the Birmingham University
Imaging Centre (3-T Philips Achieva scanner). T2*-weighted func-
tional and T1-weighted anatomical (1 � 1 � 1 mm) data were
collected with an eight channel SENSE head coil. EPI data (gradient
echo-pulse sequences) were acquired from 33 slices (2.5 � 2.5 �
3-mm resolution, TR: 2,000 ms, TE: 35 ms) providing whole brain
coverage.

fMRI data analysis

FMRI DATA PREPROCESSING. fMRI data were processed using the
Brain Voyager QX (Brain Innovations, Maastricht, Germany) soft-
ware package (Goebel et al. 2006). Preprocessing of all functional
data included slice-scan time and head movement correction, temporal
high-pass filtering (3 cycles), and removal of linear trends. No spatial
smoothing was performed on the functional data used for the multi-

variate analysis. Anatomical data were transformed into Talairach
space, three-dimensional reconstructed, inflated, and flattened. The
functional images were aligned to anatomical data resulting in spa-
tially standardized four-dimensional volume-time-course data.

MAPPING REGIONS OF INTEREST. For each observer we identified
the following: 1) retinotopic areas, 2) the lateral occipital complex
(LOC), and 3) Glass pattern-responsive regions (GPRRs). We local-
ized early visual areas based on standard retinotopic mapping proce-
dures (supplementary material) (DeYoe et al. 1996; Engel et al. 1994;
Sereno et al. 1995). We defined the LOC as the set of contiguous
voxels in the ventral occipitotemporal cortex that showed significantly
stronger activation (t(158) � 4.0, P � 0.001) for intact than scrambled
images of objects (Kourtzi and Kanwisher 2000) (supplementary
material).

To identify cortical regions that responded more strongly to global
pattern stimuli (concentric, radial, translational Glass patterns) com-
pared with randomly oriented dot dipole stimuli (random stimuli), we
compared responses of individual voxels to these stimuli using the
general linear model. We performed this analysis across subjects (Fig.
1B, group analysis) and for individual observers (Fig. S2). For the
group analysis, smoothed volume-time-course data (Gaussian kernel
of 6-mm full-width at half maximum) was z-transformed and modeled
with five regressors of interest (4 stimulus conditions and fixation
baseline) convolved with a canonical hemodynamic response function
and six additional covariates of no interest (the movement-parameters
obtained during motion correction for x-, y-, and z-translations and
rotations). For individual observer data, we analyzed unsmoothed,
z-transformed volume-time-course data using the same general linear
model approach.

MULTI-VOXEL PATTERN ANALYSIS. For each region of interest
(ROI), we sorted the voxels according to their response (t-statistic) to
all stimulus conditions compared with fixation baseline across all
experimental runs. We selected the same number of voxels across
ROIs and observers by restricting the pattern size to those voxels that
showed a t value �0 for the “all conditions versus fixation” contrast.
This procedure resulted in the selection of 130 voxels per ROI,
comparable to the dimensionality used in previous studies (Haynes
and Rees 2005; Kamitani and Tong 2005). At this pattern size, all
voxels across subjects and ROIs had t values that were �0; that is, all
voxels in the analyzed patterns were responsive to all stimulus types.
We normalized (z-score) each voxel’s time course separately for each
experimental run to minimize baseline differences across runs. The
data vectors for the multivariate analysis were generated by shifting
the fMRI time series by 4 s to account for the delay of the hemody-
namic response and averaging all time series data points of one
experimental block. We used a Support Vector Machine (SVMlight

toolbox, supplementary material) for classification and performed an
eightfold cross-validation leaving one run out (test sample). That is,
we used data from seven runs as training patterns (112 patterns: 16
patterns per run) and data from the remaining run as test patterns (16
patterns). For each subject we averaged the accuracy rates (number of
correctly assigned test patterns/total number of assignments) across
cross-validations. Statistical significance across subjects was evalu-
ated using repeated measures ANOVA. All ANOVAs were corrected
(Greenhouse-Geisser) for nonsphericity (inhomogeneity of variance).
For the multi-voxel pattern analysis (MVPA) of voxels in the Glass
pattern responsive regions (GPRRs), we selected voxels that showed
significantly stronger activation for Glass patterns than random pat-
tern using only the set of training runs included in each cross-
validation. We compared accuracy across all areas for a three-way
classification (concentric, radial, translation patterns) and pairwise
classifications of interest (experiment 1: each Glass pattern compared
with random stimuli, concentric vs. radial Glass patterns; experiment
2: random 1 vs. random 2, random 2 vs. random 2–90°).
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R E S U L T S

To study the processing of global structure in Glass patterns
across visual areas, we identified in each individual observer
retinotopic areas, the LOC, and GPRRs that responded signif-
icantly stronger to Glass than random patterns. We used pattern
classification analyses (MVPA) previously used successfully
for the decoding of elementary visual features (Haynes and
Rees 2005; Kamitani and Tong 2005, 2006) and object cate-
gories (Hanson et al. 2004; Haxby et al. 2001; O’Toole et al.
2005; Williams et al. 2007). We conducted three main MVPA
analyses to study selectivity for features that define global
structure in Glass patterns across stages of analysis in the
human visual cortex. We first tested which of the cortical
regions of interest contain information that allows reliable
discrimination of the different Glass patterns (3-way classifi-
cation: concentric vs. radial vs. translational). Second, we
tested whether selectivity for each of the different Glass pattern
types differed across regions of interest (binary classifications:
concentric, radial, or translational patterns vs. random pat-
terns). Finally, we tested whether selectivity for global forms in
these regions reflects differences in global structure (concentric
vs. radial) rather than low-level features (local position, orien-
tation signals).

Classification of fMRI signals for different Glass
pattern types

We tested whether we could predict the Glass pattern type
(3-way classification: concentric vs. radial vs. translational)
presented to the observers based on fMRI signals in retinotopic
areas and the LOC. As shown in Fig. 2 (Table S1 for statistics),
the mean classification accuracy across Glass patterns was
significantly higher than chance in all regions of interest,
suggesting selectivity for different global form patterns across
visual areas. This finding suggests that neural populations
across voxels in all visual areas contain information that allows
us to differentiate between the Glass pattern types. However,

this selectivity was enhanced in higher occipitotemporal areas
(LOC) that showed significantly higher classification accuracy
than retinotopic areas (F(3,22) � 3.4, P � 0.05). Next, we
compared classification accuracy for each of the Glass pattern
types (concentric, radial, translational) across areas. A repeated-
measures ANOVA showed a significant effect of ROI
(F(3.2,22.5) � 3.4, P � 0.05) but not of stimulus type (concen-
tric, radial, translational; F(1.5,10.5) � 1.1, P � 0.36). A signif-
icant interaction between stimulus type and ROI (F(4.7,33.1) �
2.5, P � 0.05) suggested differences in pattern classification
for the different Glass pattern types across visual areas. Fol-
low-up contrasts showed higher accuracy for radial Glass
patterns in intermediate visual areas that reached significance
in V3a (radial vs. concentric, t(7) � 1.9, P � 0.05; radial vs.
translational, t(7) � 2.2, P � 0.05). These findings are consis-
tent with previous studies showing a radial bias in retinotopic
visual areas (Sasaki et al. 2006) and activations for dynamic
radial patterns in dorsal visual areas (Braddick et al. 2000;
Koyama et al. 2005; Krekelberg et al. 2005). In contrast, no
significant differences were observed across stimulus types in
V1 (F(1.7,11.7) � 0.43, P � 0.62) or LOC (F(1.2,8.3) � 0.008,
P � 0.96), indicating that classification was similar across
Glass pattern types in these areas but significantly higher in the
LOC consistent with global integration mechanisms of local
signals in higher occipitotemporal areas.

It is important to note that our stimulus generation proce-
dures aimed to match the different Glass pattern types at the
level of local orientation signals, allowing us to compare across
stimulus types. In particular, we varied the global orientation
axis (major axis of the elliptical stimulus configuration) of
concentric and radial Glass patterns in a similar manner as for
the translational stimuli (from 0 to 180° in steps of 18°). As a
result, the local dipoles in each stimulus were rotated along the
major axis. This manipulation allowed us to match more
closely the local orientation signals across stimulus types, as
each voxel was stimulated by multiple orientations across the
stimuli presented in each condition. The histograms of local
dipole orientations (Fig. S1) show that the only difference
across stimulus types was in the sampling of local orientations.
Although for the concentric and radial patterns, local orienta-
tion distributions were uniform (i.e., orientations were sampled
randomly within a range of 0–180°), for the translational
patterns, orientations were sampled in discrete steps defined by
the stimulus global axis (i.e., 10 discrete orientations were
sampled within a range of 0–180°). Thus it is possible that
concentric and radial patterns stimulate larger neural popula-
tions that are highly selective for the finely sampled orienta-
tions and result in increased fMRI responses at a single voxel.
However, the lack of significant differences in accuracy across
stimulus types in V1 and LOC suggests that this difference in
the local orientation distributions across patterns did not affect
significantly the selectivity for different stimulus types, as
measured by pattern classification of fMRI responses. Further-
more, any differences in orientation sampling across Glass
patterns types could not account for differences in the classi-
fication accuracies across areas (e.g., higher classification ac-
curacy for radial patterns in intermediate visual areas). Rather,
global pooling mechanisms of local orientation signals in the
LOC may support better discrimination of different global
stimulus patterns than early visual areas.

V1         V2          V3       V3a      VP/V3      V4        LOC
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FIG. 2. Three-way classification of functional MRI (fMRI) responses to
Glass patterns. The accuracy for classification of fMRI responses to concentric,
radial, and translational Glass patterns is shown across retinotopic areas and
the LOC. Mean classification accuracy across all patterns (pattern size � 130
voxels per area) is indicated by black squares. Classification accuracy for each
Glass pattern type is indicated by gray symbols. Error bars indicate SE across
observers (n � 8). The dashed line indicates the chance level for the 3-way
classification (0.33).
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Further analysis of the functional signal-to-noise ratio across
all voxels included in the multivariate analysis (Fig. S3)
showed that these findings reflect differences in selectivity for
global form patterns rather than simply the overall responsive-
ness to the stimuli. In particular, this analysis showed that the
high classification accuracy for Glass patterns in the LOC was
not simply caused by high fMRI responses in this area; in
contrast, higher occipitotemporal showed lower responsiveness
than early retinotopic areas (experiment 1: F(2,18) � 31.6, P �
0.05; experiment 2: F(2,9) � 21.7, P � 0.05). Finally, our
findings could not be simply caused by differences in eye
movements, attention, or task difficulty. Analysis of the eye
movement measurements showed that observers could main-
tain fixation while performing the target detection task. Eye
movement measurements did not differ significantly across
conditions (Fig. S4; Table S2), suggesting that it is unlikely
that classification accuracy reflected activation differences
caused by differential eye movements across conditions. Ob-
servers’ performance (accuracy, reaction times) in detecting
the target stimulus (hyperbolic pattern) during scanning did not
differ significantly across conditions (supplementary material),
suggesting that observers attended similarly to all stimuli
across conditions.

Comparing fMRI selectivity for different Glass pattern types

Previous psychophysical studies have proposed that the
perception of concentric and radial Glass patterns entails pro-
cessing of global feature configurations, whereas perception of
translational patterns entails local orientation processing (Li
and Westheimer 1997; Olzak and Thomas 1992; Wilson and
Wilkinson 1998). In particular, concentric or radial patterns are
easier to discriminate from noise than translational patterns
(Wilson and Wilkinson 1998). Furthermore, several studies
have shown a behavioral advantage for the perception (i.e.,
detection, discrimination) of circular patterns across a range of
stimuli (Glass patterns, collinear Gabor-defined patterns, grat-
ings, radial frequency patterns) (Achtman et al. 2003; Hess
et al. 1999; Kovacs and Julesz 1993, 1994; Kurki and Saarinen
2004; Levi and Klein 2000; McGraw et al. 2004; Regan and
Hamstra 1992; Seu and Ferrera 2001; Wilkinson et al. 1998;
Wilson and Wilkinson 1998, 2003; Wilson et al. 1997, 2004).

We tested whether fMRI selectivity for Glass pattern types
(concentric, radial translational) across visual areas differed in
accordance with these behavioral effects. We computed fMRI
selectivity for each Glass pattern type by conducting pairwise
classifications between activation patterns in retinotopic areas
and the LOC for each Glass pattern type (concentric, radial,
translational) and the random dot dipole stimuli. First, we
compared classification accuracy for each stimulus type against
chance (Table S1). This analysis showed that early and higher
visual areas contain information that allows us to reliably
discern neural responses selective to coherent patterns with
global form structure (concentric, radial patterns) or global
texture structure (translational patterns) from fMRI signals.
Second, we compared selectivity across global form and tex-
ture patterns by comparing classification accuracies across
Glass pattern types. A repeated-measures ANOVA (Green-
house-Geisser correction for inhomogeneity of variance)
showed a significant main effect of comparison (each Glass
pattern type vs. random; F(1,10) � 7.1, P � 0.05) and ROI

(F(3,21) � 3.5, P � 0.05) but no significant interaction between
these factors (F(4.3,29.9) � 1.66, P � 0.18). As shown in Fig. 3,
the significant effect of ROI indicates increasing classification
accuracy from earlier to higher visual areas, consistent with the
role of higher visual areas in pooling local signals to support
better discrimination of both global form and texture patterns.
However, the main effect of comparison indicates differences
in the selectivity between stimulus types with different global
structure. That is, accuracies were significantly higher for
radial than concentric patterns (P � 0.03, pairwise compari-
son) and radial than translational patterns (P � 0.01, pairwise
comparison). This higher classification accuracy for radial
patterns compared with random stimuli is consistent with a bias
for the cortical representation of radial patterns (Braddick et al.
2000; Koyama et al. 2005; Krekelberg et al. 2005; Sasaki et al.
2006). The lack of a significant interaction was probably due to
the fact that most of the areas (i.e., all the retinotopic areas)
shared a similar pattern of results (a trend for higher accuracy
for radial patterns), whereas only the LOC showed a trend for
increased accuracy for concentric patterns (Fig. 3). Preplanned
comparisons (paired sample t-test) motivated by previous im-
aging and behavioral findings showed that this radial bias was
more evident in early visual areas (radial vs. concentric, P �
0.05; radial vs. translational, P � 0.05) than the LOC where a
trend for higher accuracies for concentric patterns was ob-
served (concentric vs. translational t(7) � 2.00, P � 0.05;
concentric vs. radial, t(7) � 1.14, P � 0.07). These results
suggest potentially higher selectivity for global forms (concen-
tric, radial Glass patterns) than translational patterns in higher
occipitotemporal areas, consistent with the role of these areas
in representing the perceived global shape (Grill-Spector et al.
2000; Kourtzi and Kanwisher 2001).
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FIG. 3. Pairwise classifications between Glass patterns and random stimuli.
Classification accuracy is shown for pairwise comparisons between Glass
patterns and random stimuli (concentric vs. random, radial vs. random, trans-
lational vs. random). Mean classification (pattern size � 130 voxels per area)
accuracy across observers (n � 8) is shown for early visual areas (V1, V2),
dorsal retinotopic areas (V3, V3a), ventral retinotopic areas (VP/V3, V4), and
the LOC. Similar patterns of classification accuracy were observed in posterior
(LO) and anterior (pFs) subregions of the LOC with no significant differences
between subregions across pairwise classifications (P � 0.05). The dashed line
indicates the chance classification level (0.5). Error bars indicate SE across
observers.
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Comparing fMRI selectivity for global versus low level
stimulus features

Is it possible that classification accuracy for the discrimina-
tion of different Glass patterns from fMRI signals was caused
by low-level differences across stimuli (i.e., random differ-
ences in the position or orientation of the dot dipoles)? We
tested whether the differential selectivity observed for different
Glass pattern types could be simply caused by local differences
in the orientation and position of the dot dipoles. We compared
(pairwise classification) concentric and radial Glass patterns
(experiment 1) because these stimuli evoke different global
form percepts but also differ at the local position and orienta-
tion (90°) of the dot dipoles. In addition, we conducted pattern
classification on fMRI data recorded when observers viewed
sets of random stimuli that did not evoke the perception of
global forms but differed in local position and orientation by
90° (experiment 2: random 1 vs. random 2; random 2 vs.
random 2–90°). That is, we introduced 90° orientation differ-
ence at the local orientation in paired stimuli across conditions
(random 2 vs. random 2–90°) and in average across dipoles and
stimuli (random 1 vs. random 2). In particular, pairs of stimuli
between conditions random 2 and random 2–90° differed by a
fixed clockwise rotation of the local dipoles by 90°. In contrast,
stimuli in conditions random 1 and random 2 differed at the
orientation of the local dipoles randomly across stimuli be-
tween 0 and 180°, resulting in a mean 90° orientation differ-
ence between stimuli in the two conditions. These two proce-
dures for simulating the local differences between concentric
and radial patterns using stimuli with random structure com-
plemented each other. That is, any regularities introduced by
the fixed 90° rotation in random 2–90° were controlled by the
90° mean orientation difference across stimuli in conditions
random 1 versus random 2.

We reasoned that similar accuracies for the Glass pattern and
the random stimuli classification would indicate selectivity for
local orientation differences across neural populations. In con-
trast, higher accuracy for the classification of Glass patterns
would indicate selectivity for the perceived differences be-
tween stimuli in their global structure. Consistent with this
prediction (Fig. 4, data from 5 subjects that participated in both
experiments; Fig. S5 for data from all subjects that participated
in the experiments), the highest classification accuracy was
observed for concentric versus radial Glass patterns in the
LOC. Comparison of classification accuracies between experi-
ments (experiment 1: concentric vs. radial Glass patterns; exper-
iment 2: random 1 vs. random 2; random 2 vs. random 2–90°)
showed overall higher classification accuracy for comparison
of global form patterns (experiment 1) than local orientation
differences in random patterns (experiment 2). A repeated-
measures ANOVA for comparison (concentric vs. radial, ran-
dom 1 vs. random 2, random 2 vs. random 2–90°) and ROI
(retinotopic areas vs. LOC) showed a significant main effect of
comparison (F(1.2,4.7) � 19.75, P � 0.01) and a significant
interaction between comparison and ROI (F(1.7,6.8) � 5.6, P �
0.05). Further contrast analysis showed significant differences
between comparisons in the LOC (F(1.4,5.4) � 13.6, P � 0.05)
with higher accuracy for the classification between concentric
and radial patterns than the classification of random stimuli
(concentric vs. radial compared with random 1 vs. random 2:
P � 0.05; random 2 vs. random 2–90°: P � 0.01). In contrast,

no significant differences were observed across comparisons in
the early visual areas (F(1.8,7.4) � 1.23, P � 0.34). Moreover,
the lack of significant differences (F(1,4) � 2.0, P � 0.2) across
areas between the comparisons of random stimuli (random 1
vs. random 2, random 2 vs. random 2–90°) indicates that any
differences between these stimulus conditions did not result in
significant differences in the classification of random stimuli.
These results suggest that the high classification accuracy for
concentric versus radial patterns in higher occipitotemporal
areas could not be simply attributed to local position and
orientation differences between the stimuli. Furthermore, com-
paring the classification accuracy for concentric versus radial
patterns with the classification accuracy across Glass pattern
types (Fig. 2) showed similar results (relative to chance) across
areas. That is, no significant differences were observed (F(1,7) �
0.38, P � 0.56) between classification accuracies for global
patterns in Figs. 2 and 4 (data normalized to respective chance
levels). This comparison provides converging evidence across
analyses for the role of higher occipitotemporal regions in the
integration of local position and orientation signals for the
perception of global form and texture patterns.

Finally, we compared classification accuracy for each stim-
ulus comparison (concentric vs. radial Glass patterns; random
1 vs. random 2; random 2 vs. random 2–90°) to chance (Table
S1). This analysis showed that classification accuracy for
concentric versus radial patterns was significantly different
from chance across early and higher visual areas. However,
classification accuracy for random patterns was significantly
different from chance in the early visual areas rather than
higher occipitotemporal areas. These results suggest that dif-
ferences at the local (position and orientation) and global
structure of Glass patterns and random stimuli can be decoded
reliably across visual areas using MVPA methods. Interest-
ingly, comparing the average fMRI response across voxels in
each area (percent signal change from fixation baseline) for
concentric and radial patterns showed no significant differ-
ences (F(1,7) � 0.14, P � 0.71). This result (Fig. S6) corrob-
orates previous evidence that multivariate analyses of fMRI
signals across activation patterns are more sensitive in showing
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FIG. 4. Classification based on global structure vs. local orientations. Clas-
sification accuracies for similar local position and orientation changes in the
presence (concentric vs. radial Glass patterns, black symbols) or absence
(random 1 vs. random 2, random 2 vs. random 2–90°, gray symbols) of global
stimulus structure. Mean classification accuracy (pattern size � 130 voxels per
area) across observers is shown for all regions of interest; error bars indicate
SE across observers (n � 5). The dashed line indicates the chance classification
level (0.5).
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selectivity for features encoded at fine resolution (small neural
populations). Although our findings are consistent with these
previous studies (Haynes and Rees 2005; Kamitani and Tong
2005), the classification accuracies in early visual areas ob-
served in our study were weaker than those previously re-
ported, potentially because of stimulus-related noise. Specifi-
cally, previous studies used gratings that stimulate the recep-
tive fields measured in each voxel with a single orientation,
whereas the dot dipoles in Glass patterns and random stimuli
stimulate a given voxel with multiple orientations. However,
our results show that differences in position and orientation
(90°) of a small number of dipoles that stimulate a single voxel
seem sufficient to decode differences in feature selectivity
across stimuli. Furthermore, spurious groupings of closely
located dipoles that do not match the global structure in Glass
patterns may introduce noise into the integration process.
However, because stimuli across conditions were generated
from different seed patterns, such groupings would be equally
probable across stimulus types and affect the fMRI responses
in a similar manner. Despite these possible sources of stimulus
related noise in the MVPA, our results show that differences
across stimulus types can be decoded reliably from fMRI
signals in visual areas. Importantly, MVPA (1,000 iterations)
on shuffled data (i.e., when we assigned labels randomly to the
data) showed accuracies very close to chance for all compar-
isons (Table S3). This procedure ensured that the classification
accuracies were not simply caused by the power of the classi-
fication algorithm that could use random statistical regularities
in the data for classification; rather, it reflects information
across voxels that allows the discrimination between stimuli
based on their features.

Taken together, these findings suggest that both retinotopic
and higher occipitotemporal areas (LOC) contain information
across voxels that allows discrimination between global form
patterns (e.g., concentric vs. radial Glass patterns). However,
only the LOC contains information about the perceived differ-
ences in the global structure of different Glass pattern types
beyond their local position and orientation differences,
whereas retinotopic visual areas resolve this discrimination
based on information about local position and orientation
differences.

MVPA in Glass pattern responsive regions

We tested whether regions beyond the independently defined
ROIs (retinotopic areas and the LOC) are involved in the
processing of Glass patterns. We compared fMRI responses for
Glass patterns (concentric, radial, translational) and random
stimuli to identify regions that respond significantly stronger to
stimuli with coherent than random structure. We identified
[GLM group analysis: fixed effects (P � 0.05, Bonferroni
corrected); random effects (P � 0.05)] three anatomically
separable voxel clusters (Glass pattern responsive regions,
GPRRs) that responded significantly stronger to Glass patterns
than random stimuli (Figs. 1B and S2): 1) dorsal in the occipital
cortex and inferior to V3a (Larsson and Heeger 2006), overlap-
ping with V3B/KO and V4d (Hansen et al. 2007; Tootell and
Hadjikhani 2001) (dorsal GPRR, Talairach coordinates: right
hemisphere [29, �82, 8], left hemisphere [�28, �83, 8]), 2)
ventral lateral in the occipitotemporal cortex (VOT; Brewer
et al. 2005), overlapping with LO (ventral-lateral GPRR,

Talairach coordinates: right hemisphere [42, �63, �12], left
hemisphere [�39, �68, �7]), and 3) ventral medial in the
occipitotemporal cortex anterior to V4 (ventral-medial GPRR,
Talairach coordinates: right hemisphere [26, �59, �11], left
hemisphere [�25, �62, �9]). Similar Glass pattern responsive
regions were identified in individual observers (Figs. 1B and
S2). Furthermore, comparison of fMRI responses between
global patterns (concentric, radial) and random stimuli showed
similar activation patterns, ensuring that similar cortical re-
gions were activated when only stimuli with global form
structure were considered in the analysis, rather than all stimuli
with coherent organization. These results are consistent with
previous studies (Chen et al. 2004; Wade et al. 2003) showing
stronger activation for Glass patterns than random dipole
patterns in ventral and dorsal regions anterior to retinotopic
visual areas.

To characterize the representations in the Glass pattern
responsive regions, we performed the same MVPA analysis for
all comparisons of interest, as described for the retinotopic
areas and the LOC (Fig. 5). It is important to note that voxels
in these regions were identified based on their response to all
Glass pattern types rather than their responses to individual
stimulus types. This procedure ensured that the voxels included
in MVPA comparisons between different stimulus types were
identified based on an independent comparison. However, for
MVPA comparisons of each stimulus types versus random,
fMRI responses (based on univariate or multivariate analysis)
are expected to be higher for Glass patterns and random dot
dipole stimuli in these Glass pattern-responsive regions, as
these areas were defined based on voxel clusters that respond
significantly higher to Glass patterns than random stimuli. We
conservatively selected the voxels for the MVPA analysis by
defining GPRR voxels based only on the training runs, exclud-
ing the test run for each MVPA cross-validation. That is, the
data on which we tested the classifications of interest were
independent from those used to identify the Glass pattern-
responsive regions. Using this methodology, we provide novel
evidence for distinct functional roles of the different Glass
pattern responsive regions. In particular, pattern classification
in the dorsal region overlapping with V3B/KO and V4d reflects
discrimination of global form patterns based on local signals
(position, orientation), whereas classification in the ventral
lateral region overlapping with LO reflects representation of
global forms independent of low level stimulus properties.

As shown in Fig. 5A, the three-way classification between
different Glass pattern types showed classification accuracies
higher than chance for all regions, suggesting that activation
patterns in these regions contain information that allows us to
discriminate between the patterns. Mean classification accura-
cies did not differ significantly between the dorsal and ventral
GPRR (F(1,5) � 0.42, P � 0.54). However, mean classification
accuracy was significantly higher for the lateral than the medial
ventral subregions (F(1,5) � 6.7, P � 0.05). Analysis of the
classification accuracies for each Glass pattern type in the
dorsal and ventral GPRRs (2-way repeated-measures ANOVA)
showed no significant differences for ROI (F(1,5) � 1.3, P � 0.31)
or stimulus type (F(1.2,5) � 4.2, P � 0.09) and no significant
interaction (F(1.6,6.5) � 1.43, P � 0.30). Interestingly, a trend for
higher classification accuracy for radial patterns was observed in
the ventral medial subregion similar to the radial bias observed in
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FIG. 5. Multi-voxel pattern analysis (MVPA) of responses in Glass pattern responsive regions. Results of MVPA (classification accuracy) of fMRI responses
for GPRRs: dorsal and ventral (lateral, medial) regions. For the dorsal region, the pattern size was the same as for the independently localized regions (130
voxels). For the ventral regions, we confined the analysis to 65 voxels because these regions consisted of a smaller number of voxels. For comparison we
combined the two ventral regions (lateral, medial) and conducted the MVPA on a voxel pattern size of 130 voxels. Average accuracies are presented across
hemispheres as analysis of each hemispheric cluster separately did not show significant differences across hemispheres. Mean accuracies are shown across
observers (experiment 1: n � 6; experiment 2: n � 4). Error bars indicate SE across observers. The dashed lines indicate the respective classification chance
levels. A: 3-way classification (concentric vs. radial vs. translational): mean classification accuracy across Glass pattern types (black symbols) and for each Glass
pattern type (gray symbols). B: pairwise classifications between Glass patterns and random stimuli. C: classification accuracy for similar local position and
orientation changes in the presence (concentric vs. radial Glass patterns; black symbols) or absence (random 1 vs. random 2, random 2 vs. random 2–90°; gray
symbols) of a global pattern. Data are shown from 4 subjects that participated in both experiments 1 and 2 and for which GPRRs could be identified.

2463fMRI SELECTIVITY FOR GLASS PATTERNS IN THE HUMAN VISUAL CORTEX

J Neurophysiol • VOL 99 • MAY 2008 • www.jn.org

on O
ctober 17, 2014

D
ow

nloaded from
 



intermediate visual areas; however, this effect did not reach
significance (F(1.1,5.0) � 2.4, P � 0.19).

Next, the pairwise classifications (Fig. 5B) for each Glass
pattern type versus random showed accuracies significantly
higher than chance for all GPRRs. Comparing classification
accuracies between the dorsal and ventral GPRRs (2-way
repeated-measures ANOVA) showed significantly higher clas-
sification accuracy in the ventral than dorsal GPRR (F(1,4) �
20.5, P � 0.01). No significant main effect of comparison
(F(1.8,9.0) � 2.2, P � 0.17) or interaction between ROI and
comparison (F(1.8,9.0) � 0.67, P � 0.52) was observed. Fur-
thermore, no significant differences were found for classifica-
tion accuracies in the ventral lateral and ventral medial subre-
gions (main effect of ROI: F(1,5) � 0.16, P � 0.7, main effect
of comparison: F(1.8,9.1) � 0.88, P � 0.43, interaction of
ROI � comparison: F(1.7,8.4) � 1.3, P � 0.30).

Finally, Fig. 5C shows higher classification accuracy when
discriminating between activations for concentric and radial
patterns than activations between random stimuli that differ
locally by 90° rotation of the dot dipoles (random 1 vs. random
2, random 2 vs. random 2–90°). In particular, analysis of the
classification accuracies in the dorsal and ventral GPRRs
(2-way repeated-measures ANOVA) showed a significant main
effect of comparison (concentric vs. radial, random 1 vs.
random 2, random 2 vs. random 2–90°) (F(1.7,5.1) � 10.1, P �
0.02), no significant main effect of ROI (F(1,3) � 0.003, P �
0.96), and a trend for a significant interaction between com-
parison and ROI (F(1.4,4.2) � 5.5, P � 0.07). Following this
interaction trend, repeated-measures ANOVAs for the individ-
ual ROIs showed significant effects of comparison for the
ventral (F(1.6,4.9) � 10.4, P � 0.02) but not the dorsal GPRRs
(F(1.6,4.8) � 2.4, P � 0.18). In particular, classification accu-
racy in the ventral GPRR was higher for the concentric versus
radial comparison than random 1 versus random 2 (t(3) � 3.8,
P � 0.03) or random 2 versus random 2–90° (t(3) � 3.5, P �
0.04). Comparing classification accuracies in the ventral lateral
and ventral medial GPRR showed a significant effect of com-
parison in the ventral lateral GPRR (F(1.9,5.6) � 10.3, P � 0.01)
but not the ventral medial GPPR (F(1.7,5.1) � 1.8, P � 0.26).
This result suggests that the higher classification accuracy for
global patterns than random stimuli in the ventral GPRRs was
driven by higher accuracy for concentric versus radial than ran-
dom stimuli in the ventral lateral region (t(3) � 5.3, P � 0.01).

Taken together, these findings provide evidence for a con-
tinuum of integration processes for the perception of global
forms in Glass patterns across stages of visual analysis. In
particular, classification in the medial ventral region anterior to
V4 (VOT cortex) and a dorsal region anterior to V3a and
corresponding to V3B/KO and V4d suggests that neural pop-
ulations in these region discriminate between global form
patterns based on local signals (position, orientation). In con-
trast, classification of Glass patterns in a ventral lateral region
overlapping with LO showed overall higher accuracies than
more posterior (dorsal, ventral medial) regions and increased
accuracy for global patterns (concentric vs. radial) than random
stimuli. These findings suggest that neural populations in this
ventral lateral region integrate local signals to global configu-
rations and represent the global form structure independent of
low level stimulus properties.

Our findings are consistent with previous work attributing
global integration processes to areas V4 and IT. Regarding area

V4, previous physiological studies have shown population
selectivity for curvature (Pasupathy and Connor 1999, 2001,
2002) and neurons with selective tuning for global form pat-
terns (concentric, radial, hyperbolic) compared with transla-
tional patterns (Gallant et al. 1993, 1996). Human brain imag-
ing (fMRI, EEG, intracranial recordings, lesion) studies show
that global integration processes for circular patterns occur at
later stages of analysis corresponding to human ventral V4
(Allison et al. 1999; Dumoulin and Hess 2007; Gallant et al.
2000; Ohla et al. 2005; Pei et al. 2005; Wilkinson et al. 2000).
However, our results show differential selectivity across dif-
ferent types of Glass patterns (i.e., higher selectivity for con-
centric and radial than translational patterns) primarily in
dorsal regions anterior to V3a that have been suggested to
correspond to V3B/KO and dorsal V4 rather than in ventral
V4. It is possible that this is because of differences in the
stimuli used (e.g., full field gratings used in previous studies vs.
patterns defined by sparse dot pairs used in our study) or
differences in the functional organization of V4 in the human
and monkey brain (Tootell and Hadjikhani 2001). Further
imaging studies in both human and monkeys (Tse et al. 2002)
using the same stimuli would be necessary to resolve the role
of ventral and dorsal V4 as an intermediate stage in the
integration of global forms. Finally, previous physiological
studies show that neurons in posterior IT integrate local con-
tour fragments as defined by combinations of curvature, ori-
entation, and position information into shape configurations-
(Brincat and Connor 2004, 2006) that provide the basis for
object recognition at more anterior IT regions. Interestingly, a
previous imaging study showed higher responses for concen-
tric versus radial patterns in anterior temporal areas specialized
for face processing (human area FFA), suggesting that face
perception may rely on the processing of circular feature
configurations (Wilkinson et al. 2000). Our findings show that
selectivity for higher-order features that mediates the discrim-
ination of global forms (concentric vs. radial patterns) starts at
more posterior sites of visual analysis in the ventral lateral
occipital cortex.

Classification accuracy and selectivity as a function
of pattern size

To gain further insight into the amount of information across
voxels necessary for the classification of global form structure,
we evaluated classification accuracy for concentric versus
radial Glass patterns as a function of pattern size. We random-
ized the order of voxels across the pattern size (i.e., 200 voxels
that responded significantly stronger to all stimuli than fixation
in each region of interest) and performed 500 MVPA iterations
with a different randomized order of voxels per iteration. As
observed in previous studies (Haynes and Rees 2005; Kamitani
and Tong 2005), classification accuracy increased with increas-
ing pattern size to a saturation value at which the inclusion of
more dimensions/voxels does not increase the classification
accuracy further (Fig. 6). Fitting the accuracy across pattern
size for each area with a power law function that has been
previously used for modeling neural data (Bonin et al. 2005; Li
and Freeman 2007) confirmed that classification accuracy in-
creased nonlinearly with pattern size for all regions of interest
(i.e., exponents closer to 0 than 1; e.g., V1: k � 0.04, r2 � 0.99;
LOC: k � 0.04, r2 � 0.91; ventral GPPR: k � 0.05, r2 � 0.94).
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To quantify the rate with which classification accuracy
increased with pattern size, we used a saturation model that
allows us to determine the pattern size (voxel constant, �) for
which the classification accuracy reaches 63% of the difference
between the maximum accuracy (asymptote) and chance (sup-
plementary material). The goodness of fit was high and signif-
icant (�2, P � 0.05) for all areas. Figure 6 compares accuracy
across pattern size for the classification of concentric versus
radial Glass patterns for early (V1) and higher (LOC, vGPRR)
visual areas, showing higher accuracy for smaller pattern size
in higher visual areas than V1. To quantify differences across
areas, we computed the ratio of accuracy relative to chance
[�A � (AMax – 50%)] over the voxel constant (�) as a measure
of the rate with which information for the classification of
global form accumulates across voxels. This ratio was signif-
icantly higher in occipitotemporal than early visual areas (Ta-
ble S4), indicating higher classification accuracy at smaller
pattern sizes in higher visual areas. These results suggest that

higher occipitotemporal areas integrate information about
global form structure across a smaller pattern size (i.e., smaller
neural populations) than early visual areas, consistent with the
neural properties of higher visual areas (i.e., larger receptive
fields tuned to the global stimulus structure). Could these
results reflect simply differences in the amount of information
(i.e., number of dipoles) stimulating voxels corresponding to
neural populations with different receptive field sizes across
visual areas? Previous fMRI studies (Dumoulin and Wandell
2008) have determined the size of population receptive fields
(V1: 0.5–1° radius; LOC: 4–8° radius) based on the cortical
magnification factor for the same voxel size as used in our
study (2.5 � 2.5 � 3 mm). Based on these estimates, the size
(10.8° visual angle) and the density (0.4% dot density) of our
stimuli, we estimated that 1–5 dipoles stimulated a single voxel
in V1, whereas the entire stimulus (�150 dipoles) stimulated a
single voxel in the LOC. These differences in the amount of
information per voxel (i.e., number of dipoles) across areas
were similar for global (i.e., concentric vs. radial patterns) and
random (e.g., random 2 vs. random 2–90°). However, differ-
ences in the rate with which classification accuracy increased
between early and higher visual areas were specific to global
form stimuli (concentric vs. radial Glass patterns); that is,
classification accuracy across pattern size for random patterns
was similar across early and higher visual areas (Fig. S7).
Furthermore, these differences in the rate of information nec-
essary for classification of global form structure across areas
could not be simply attributed to differences in the magnitude
of responses across voxels in the pattern size or possible spatial
correlations between voxels with similar responsiveness to the
stimuli because the order of the voxels in the pattern size was
randomized for a large number of MVPA iterations.

To further study these differences in selectivity for global
forms across visual areas, we computed the bias (i.e., z-score
normalized difference of fMRI responses) for concentric ver-
sus radial Glass patterns for each voxel included in the MVPA.
Comparison of these voxel-bias distributions (i.e., population
histograms) across areas showed narrower distributions in
early visual areas than higher occipitotemporal areas (LOC,
vGPRR). As shown in Fig. 7, comparison of voxel-bias distri-
butions between V1 and LOC (Fig. 7A) and V1 and vGPRR
(Fig. 7B) showed larger number of voxels (proportion of total
voxel population in each ROI) with higher bias values in the
LOC and vGPRR than V1 (Fig. S8). Comparison of the
distribution SD showed significantly higher variance in LOC
(F(1,7) � 16.4, P � 0.05) and vGPRR (F(1,7) � 5.4, P � 0.05)
than V1, consistent with a trend for higher kurtosis (i.e., higher
variance caused by extreme values) in higher than early visual
areas (Table S5). This analysis suggests that a smaller but more
selective population of voxels in higher occipitotemporal areas
than primary visual cortex contains information that supports
the discrimination of features defining global forms (concentric
vs. radial patterns).

Importantly, this difference between higher and early visual
areas was shown to be specific to global form features rather
than to local orientation differences. In particular, voxel-bias
distributions for the control conditions (i.e., z-score normalized
difference of fMRI responses for random 2 and random 2–90°)
were similar across areas (Table S5). Comparison of the SD of
the voxel-bias distributions for Glass patterns (concentric vs.
radial) and control stimuli (random 2 and random 2–90°) for
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FIG. 6. Classification accuracy curves across voxel pattern size. Classifi-
cation accuracy curves for classification of concentric vs. radial Glass patterns
are plotted across voxel pattern size. Comparison of classification accuracy for
V1 (black curve) with (A) LOC (gray curve) and (B) ventral GPRR (gray
curve). The mean of classification accuracy for 500 MVPA iterations (ran-
domized order of voxels in the pattern size across iterations) across subjects is
shown. The dotted lines show SE across observers. Vertical lines indicate the
voxel constant (�) for V1 (� � 33.38, black line) compared with LOC (� �
15.06, gray line) and vGPRR (� � 18.77, gray line), indicating that a smaller
pattern size is necessary for discriminating concentric vs. radial Glass patterns
in higher occipitotemporal than early visual areas.
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V1 and LOC yielded a significant interaction (F(1,7) � 11.9,
P � 0.05). These findings are consistent with differences in
neural code across areas specific to global form features rather
than differences in local position and orientation signals.

Taken together, these findings suggest that neural popula-
tions involved in the analysis of global forms are smaller but
more selective in higher occipitotemporal than retinotopic
areas. These findings are consistent with the proposal that the
neural code for global shapes becomes sparser and more
efficient across stages of analysis in the visual cortex (Baker
et al. 2002; Brincat and Connor 2004, 2006; Fujita et al. 1992;
Riesenhuber and Poggio 1999; Tsunoda et al. 2001). It is
important to note that the spatial resolution of fMRI limits us
in characterizing the neural code for global forms at the level

of neural populations within voxels rather than single neurons.
Further studies manipulating shape properties (e.g., stimulus
curvature or complexity) are necessary for evaluating the
neural properties (i.e., selectivity and sparseness) with which
more complex shape features are encoded in the human tem-
poral cortex.

D I S C U S S I O N

Our findings provide novel evidence for distinct neural
mechanisms involved in the integration of global form struc-
ture in Glass patterns across stages of visual analysis in the
human brain. In particular, both retinotopic and higher occipi-
totemporal areas contain information across voxels that allows
us to discriminate between stimuli that evoke the perception of
global form in Glass patterns. However, only higher areas in
the ventral lateral occipital cortex show selectivity for higher
order (global structure) features beyond low-level stimulus
differences. Specifically, early visual areas discriminate be-
tween global forms by sampling local information about ele-
mentary features (e.g., position, orientation). In contrast, ven-
tral lateral regions (LO) are involved in the integration of local
signals to global form structure that facilitates the discrimina-
tion of concentric from radial patterns, consistent with the
behavioral advantage for the detection of concentric compared
with radial and translational patterns. Importantly, the analysis
of higher-order stimulus features that define global forms in
Glass patterns is supported by smaller but more selective
neural populations in higher occipitotemporal areas, consistent
with global pooling of local orientation signals from earlier
stages of analysis(Wilson and Wilkinson 1998). In contrast,
retinotopic areas integrate local position and orientation signals
across larger neural populations, that is consistent with a
summation process within and outside the classical receptive
field of neurons in these areas (Smith et al. 2002, 2007).

Extending beyond understanding selectivity for global forms
in Glass patterns in the human brain, these findings advance
our understanding of the neural basis of visual form analysis
along the human visual cortex in several respects. First, our
study provides a systematic study of selectivity for global form
structure across stages of analysis in the human visual cortex.
We test the hypothesis proposed by previous psychophysical
and computational work that early stages of visual analysis
resolve the processing of homogenous texture fields (e.g.,
translational Glass patterns), whereas later stages the percep-
tion of more complex forms (radial, concentric patterns) (Car-
dinal and Kiper 2003; Dakin 1997a,b; Dakin and Bex 2001; De
Valois and Switkes 1980; Glass and Switkes 1976; Maloney
et al. 1987; Mandelli and Kiper 2005; Prazdny 1984, 1986;
Wilson and Wilkinson 1998; Wilson et al. 1997). Using ad-
vanced and sensitive multivariate methods for the analysis of
fMRI data, we show selectivity for elementary visual features
(position, orientation) in retinotopic areas, whereas selectivity
for global form structure (i.e., concentric vs. radial patterns)
beyond local signal differences in higher occipitotemporal
cortex.

Second, our methods allow for systematic comparisons
across areas and characterization of their differential functional
roles. In contrast to previous studies that have used stimuli
varying in complexity and local statistics (gratings, dot pat-
terns, Gabor patches) for characterizing different visual areas
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based on their preferable stimulus tuning, we use the same
stimulus (Glass patterns) to trace neural processing along the
visual cortex. Our choice of stimulus was motivated by the
global form properties of Glass patterns that have been studied
extensively in previous psychophysical and modeling studies.
In particular, Glass patterns 1) evoke the perception of differ-
ent global forms while being on average matched for their local
statistics, 2) entail integration of local orientation signals to
global form percepts, and 3) represent basic forms (e.g., cir-
cular, radial) that form the primitives of biologically relevant
complex objects (e.g., faces). Furthermore, the use of fMRI
allows us to test for selectivity across all visual areas simulta-
neously in the same subjects with the same experimental
paradigm. Using this methodology, our findings show a func-
tional architecture for the integration of global shapes in the
human visual cortex that is consistent with previous neuro-
physiological studies. In particular, neurons in V1 and V2
(Hegde and Van Essen 2000, 2003, 2004; Ito and Komatsu
2004; Peterhans and von der Heydt 1993; Smith et al. 2002,
2007) have been suggested to compute local orientation signals
(i.e., dot dipoles in Glass patterns) within the area of their
receptive fields and integrate collinear edges into contours
within their extended receptive field or through a circuit of
local (facilitative and suppressive) and recurrent (feedback
from higher areas) interactions (Allman et al. 1985; Fitzpatrick
2000; Gilbert 1992, 1998; Lamme et al. 1998; Murray et al.
2004). However, global spatial integration of multiple orienta-
tion signals has been attributed to V4 neurons that have larger
receptive fields than neurons at earlier stages of processing
(Desimone and Schein 1987) and show selectivity for higher-
order features of moderate complexity (e.g., curvature, angles)
that define shape parts (Gallant et al. 1993, 1996; Kobatake and
Tanaka 1994; Pasupathy and Connor 1999, 2001, 2002). Fi-
nally, information about object parts is converted based on
both linear and nonlinear integration mechanisms into sparser
representations of complex shapes (multipart configurations) at
the posterior inferior temporal cortex (Baker et al. 2002;
Brincat and Connor 2004, 2006; Fujita et al. 1992; Riesenhuber
and Poggio 1999; Tsunoda et al. 2001). These shape configu-
rations provide the basis for object recognition at more anterior
IT regions where neurons selective even for entire objects have
been identified (Gross et al. 1972; Logothetis and Sheinberg
1996; Rolls and Tovee 1995; Tanaka 1996; Tsao et al. 2006;
Young and Yamane 1992).

Third, the use of multivariate analysis for fMRI signals
(MVPA) allows us to study in depth the cascade of processes
involved in converting information about image edges from V1
to selectivity for global forms and objects in the temporal
cortex. In contrast to univariate analysis, MVPA allows us to
discern selectivity for stimulus features that are encoded by
neural ensembles at a higher resolution than the typical size of
fMRI voxels (Haynes and Rees 2005; Kamitani and Tong
2005; Norman et al. 2006). In particular, our previous imaging
work has shown that early visual areas integrate local elements
to contours within the neighborhood of their receptive field,
whereas higher visual areas represent the perceived global
shape by comparing responses to collinear versus random
patterns (Altmann et al. 2003; Kourtzi et al. 2003). However,
only when using multivariate approaches could we discern
selectivity for higher-order features that mediate the discrimi-
nation of global forms (e.g., concentric vs. radial Glass pat-

terns). In contrast, comparing univariate responses (average
percent signal change across voxels) for concentric versus
radial patterns did not show any significant differences. This
analysis suggests that weak biases in individual voxels may
show information about feature selectivity when the bias of
several voxels across multi-voxel patterns is considered. Pre-
vious studies have used fMRI adaptation for showing differ-
ential responses to global form patterns (e.g., concentric vs.
radial dynamic Glass patterns) from weak biases in individual
voxels (Krekelberg et al. 2005). These studies suggest that
higher occipitotemporal areas represent the perceived global
structure rather than local stimulus differences. Despite simi-
larities in the findings between these previous fMRI adaptation
studies and the MVPA results presented here, important dif-
ferences remain. Specifically, fMRI selective adaptation re-
veals differential stimulus-specific responses in single voxels
related to neural adaptation (i.e., decreased responses caused
by prolonged stimulus presentation or repetition and recovery
from adaptation), whereas MVPA shows stimulus-specific re-
sponses based on fMRI signals pooled across multi-voxel
patterns. Further combined fMRI and physiology studies using
the same stimuli and tasks are necessary to shed more light to
the similarities and/or differences between these approaches
and the relation of fMRI findings to neural selectivity.

Interestingly, studying the extent of the spatial brain pattern
necessary for the classification of global forms based on fMRI
signals provides novel insights in understanding the nature of
the neural code for representing visual information across
cortical areas. This analysis provides evidence that higher
occipitotemporal areas discern differences in global form struc-
ture (i.e., concentric vs. radial Glass patterns) with higher
accuracy than early visual areas while relying on information
from smaller but more selective neural populations (smaller
pattern size). These findings are consistent with neurophysio-
logical evidence for smaller neural populations with large
receptive fields tuned to the global stimulus properties in
higher occipitotemporal areas. Thus our study shows that
multivariate approaches are a useful and sensitive tool for
studying the neural code that the human brain uses for trans-
lating sensory information to global percepts. However, cau-
tious interpretation of the MVPA results in relation to neural
processing is necessary given the power of the algorithms for
optimal classification and the limitations imposed by the spatial
resolution of hemodynamic measurements. Taking into ac-
count these limitations, we performed a series of stringent tests
(e.g., voxel selection based on independent data sets, classifi-
cation of shuffled data, comparison of the same pattern size
across visual areas, comparison of classification accuracies for
different sets of stimuli and data within each area) that allow us
to characterize conservatively selectivity for global forms
along the human visual pathway.

In conclusion, our study investigates the neural basis of
mid-level vision mechanisms that convert local signals to
global form percepts in the human brain. Combining paramet-
rically defined stimuli and multivariate fMRI methods, we
show differential selectivity for global form features across
stages of visual analysis. Our results are consistent with com-
putational models of vision (Barlow and Olshausen 2004;
Geisler et al. 2001; Sigman et al. 2001), proposing that the
perception of higher-order structure in natural images relies on
the combination of the output of local orientation filters in
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primary visual cortex to form higher-order features represented
in temporal cortex. Our findings show that coding of global
forms in the human brain proceeds from analysis of local
orientation signals in V1 to selective representations of higher-
order (global structure) features (e.g., curvature, junctions) in
the temporal cortex. These findings are consistent with the
proposal that the visual system uses a code of increasing
efficiency across stages of processing that is advantageous in
many respects: it reduces redundancy in the sensory input by
integrating local signals into coherent percepts (Barlow 1972;
Olshausen and Field 2004; Simoncelli and Olshausen 2001;
Willmore and Tolhurst 2001), provides the building blocks for
the representation of complex shapes and biologically impor-
tant object categories (e.g., faces) (Biederman 1987; Marr and
Vaina 1982), and supports fast read out of task-relevant infor-
mation at different levels of shape description. As such, this
code makes up a fundamental computational principle for the
analysis of sensory input in the human brain and is critical for
successful detection and recognition of targets in cluttered
environments.
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