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Because specular reflection is view-dependent, shiny
surfaces behave radically differently from matte,
textured surfaces when viewed with two eyes. As a
result, specular reflections pose substantial problems for
binocular stereopsis. Here we use a combination of
computer graphics and geometrical analysis to
characterize the key respects in which specular stereo
differs from standard stereo, to identify how and why
the human visual system fails to reconstruct depths
correctly from specular reflections. We describe
rendering of stereoscopic images of specular surfaces in
which the disparity information can be varied
parametrically and independently of monocular
appearance. Using the generated surfaces and images,
we explain how stereo correspondence can be
established with known and unknown surface geometry.
We show that even with known geometry, stereo
matching for specular surfaces is nontrivial because
points in one eye may have zero, one, or multiple
matches in the other eye. Matching features typically
yield skew (nonintersecting) rays, leading to substantial
ortho-epipolar components to the disparities, which
makes deriving depth values from matches nontrivial.
We suggest that the human visual system may base its
depth estimates solely on the epipolar components of
disparities while treating the ortho-epipolar components
as a measure of the underlying reliability of the disparity
signals. Reconstructing virtual surfaces according to
these principles reveals that they are piece-wise smooth
with very large discontinuities close to inflection points
on the physical surface. Together, these distinctive
characteristics lead to cues that the visual system could
use to diagnose specular reflections from binocular
information.

Introduction and goals

Binocular vision provides humans and machines
with a ready source of information about the depth
structure of a surrounding scene. To infer depth from
binocular disparities, it is first necessary to match image
features between the two views. For matte objects,
elements that match between the viewpoints tend to be
similar in form, arise at similar locations in the image
(at least vertically), and vary smoothly across space.
However, specular objects (such as a polished kettle or
chrome bumper) can give rise to binocular disparity
signals quite different from those that arise from matte
objects. Here, we aim to explain and detail these
differences.

A well-known feature of specular reflections is that
they often lie at a location in space that is displaced
from the true surface of the object (Blake & Bülthoff,
1991; Hurlbert, Cumming, & Parker, 1991; Kerrigan &
Adams, 2013). This contrasts with nonspecular objects
where disparity values map-to-surface depth in a
straightforward way. This difference in the relationship
between depth values and surface location poses a
potential challenge to both artificial and human visual
systems. Here, we seek to characterize the conditions
that lead to the displacement of specular reflections. We
do this as a means of understanding why human
observers treat reflections as though they are true
surface markings when judging depths (Muryy,
Welchman, Blake, & Fleming, 2013). In the process, we
also quantify other respects in which specular reflec-
tions deviate from standard stereopsis.
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Most previous theoretical and computational work
has focused on the behavior of individual highlights
(Koenderink & van Doorn, 1980; Longuet-Higgins,
1960) or surface reconstruction from multiple images
(including stereopsis and movement: Blake & Brelstaff,
1988; Oren & Nayar, 1997; Sankaranarayanan, Veer-
araghavan, Tuzel, & Agrawal, 2010; Vasilyev, Adato,
Zickler, & Ben-Shahar, 2008; Vasilyev, Zickler, Gor-
tler, & Ben-Shahar, 2011; Zisserman, Giblin, & Blake,
1989). However, few of these studies explicitly spell out
the main challenges that specular stereo present to the
human visual system. Here we characterize in detail
several key properties of specular stereopsis. First, we
present a method for determining ground-truth stereo
matches for mirror surfaces of known geometry,
demonstrating the presence of image regions for which
meaningful stereo matches do not exist. Then, we
describe key features of specular disparities that are
potentially important for both biological and machine
stereo vision. In particular, we detail the presence of
nonepiopolar disparity matches and the potential for
very large disparity gradients and discontinuities. We
further address the instability of specular disparity
fields with respect to variations of viewing/surface
geometries. Finally, we show that the distribution of
ortho-epipolar disparities is related to surface geome-
try, providing a constraint when estimating the
curvature of the viewed object. Thereby we show that
even though specular stereo signals do not support
direct perceptual estimates of the physical shape of an
object (Muryy, Welchman, Blake, & Fleming, 2013),
specular disparity fields do carry information about the
intimate relations between the viewing geometry and
surface topography which could potentially be ex-
ploited by humans and artificial systems.

Specular and Lambertian
illumination mapping

To frame the problem of specular stereo and its
differences from the typical case of a Lambertian
object, we start by considering the ray geometry of
binocular image generation. We pose this as the process
of generating a computer image; however, the exposi-
tion describes the information that is available to either
a human or artificial visual system. Understanding the
relevant image information is a crucial step for
determining which binocular cues the human visual
system could use to identify and interpret the disparities
produced by specular surfaces.

Rendering an image of an object depends on three
main elements: (a) the object’s surface (geometry and
material), (b) the viewing geometry (left and right
viewpoints and orientations) and (c) the illumination

provided by the scene (from a single point light source
to a full illumination map). Let us assume that (a) the
surface S and its normal vectors N are known, and the
surface material is a perfect mirror,1 (b) the viewpoints
are located at EL and ER (at finite distance from the
surface), and (c) the illumination is a spherical
illumination map at infinity (Debevec, 2008). To render
the image of the object entails that for each visible
point P of surface S we determine its pixel value in the
images for EL and ER.

The rendering process for an ideal mirror

Ideal mirrors do not have texture markings, so the
image consists of nothing more than a distorted
reflection of the surrounding environment. In order to
find the pixel value of point P in the image of eye EL,
we trace viewing vector vL¼ P – EL, calculate the
reflected ray vector by the law of specular reflection xL

¼ 2 (n vL) nþ vL, trace it out to the environment and
take the corresponding pixel value of the spherical
illumination map (Figure 1b).

There are three main observations to make about
this generative process. First, notice that since viewing
vectors from left and right eyes at surface point P are
different vL(P) 6¼ vR(P), the left and right reflected ray
vectors cannot be equal xL(P) 6¼ xR(P) such that
different locations in the environment are viewed by the
two eyes. Therefore, surface point P will generally have
different pixel values in EL and ER eyes and thus left
and right images of this surface point will be disparate.
Second, notice that the reflected ray vectors that
determine the pixel values vary twice as fast as surface
normal vectors. This leads to the characteristic
distortions of the environment in mirror reflections
(under orthographic projection a hemispherical mirror
images the entire sphere around the surface).

Third, near2 surface inflection points where the
surface normal vectors start turning in the opposite
direction, the reflected vectors invert. In consequence
the reflected ray vectors sweep through the same
portions of the environment several times, giving rise to
multiple reflections of the same feature in the environ-
ment map (see Figure 1b stereo pair: the reflection of
Utrecht Dom Tower appears three times). This
multiple mapping of the environment to the image has
the potential to give rise to significant confusion when
calculating stereo correspondence. Nevertheless, in the
Section on determining specular stereo-matches using
ray geometry (below), we describe how local matching
could in principle be used to filter out such potentially
misleading matches to ensure that matches come from
surface patches with qualitatively similar structure. In
particular, although global matches (e.g., three images
of the Dom Tower) involve reflections of the same
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Figure 1. The stereo-rendering process. (A) Creating stereo images of reflective objects involves a 3-D shape model (left) illuminated

by a spherical illumination map (right). Here the illumination map is unwrapped into a latitude-longitude projection. (B) The

rendering process for a mirror. Point P on the surface of the object is viewed from eyes ER and EL. The pixel value at point P is

�

Journal of Vision (2014) 14(14):14, 1–26 Muryy, Fleming, & Welchman 3



portions of the surrounding environment, from the
point of view of stereopsis, two should be considered
spurious matches (like those that occur in the wallpaper
illusion) and thus be filtered out.

Rendering surfaces with specular reflections
stereoscopically painted onto the surface

Being able to render a graphical image of a specular
object is a good starting point to understand the way in
which the human visual system might process the
information it contains. However, from an experimen-
tal perspective it is useful to be able to construct
versions of the stimuli that differ along a key dimension
(e.g., specularity), while keeping other factors (e.g.,
low-level image statistics) as similar as possible.
Previous studies on the role of individual point light
highlights have used such an approach by placing single
highlights on the surface of the object (Blake &
Bülthoff, 1990; Wendt, Faul, & Mausfeld, 2008). Here
we use a similar approach for full scene reflections and
thereby isolate and characterize the effects of specu-
larity on human stereopsis (see the Section on the
interpretation of stereo-matches as virtual surface
depths [below]). In particular, we can quantify the
differences between specular and matte versions of an
object to understand the specific properties of specular
stereo available to the human visual system, and then
use such stimuli to conduct perceptual experiments.
Here we describe a way in which such stimuli can be
generated in order to isolate the binocular differences
between matte and specular objects while the monoc-
ular content of the stereo pairs remains as close as
possible to identical across mirrored and matte
versions. This is important for our subsequent analysis
as it allows us to directly compare the binocular
properties of matte and specular surfaces.

As a starting point, we can ‘‘paint’’ the specular
reflections onto the surface of an object so that the
reflections are practically indistinguishable from true
mirror reflections when viewed monocularly, but which
have all the disparity characteristics of standard surface
texture markings when viewed binocularly. Such

painted stimuli are akin to sticky reflections for moving
objects (Doerschner et al., 2011). Here we show how
the painting approach can be generalized to allow
parametric manipulation of specular objects suitable
for studies of the human visual system. This comple-
ments suggestions for perceptually motivated shortcuts
when rendering specular (Templin, Didyk, Ritschel,
Myszkowski, & Seidel, 2012) and refractive (Dąbała et
al., 2014) objects.

In order to make left and right images stereoscop-
ically consistent, the pixel values of the surface should
be independent of viewing point, that is, the reflected
patterns should be attached (painted on) to the surface.
We also would like to be able to ensure that monocular
properties of the images are similar to mirrors, that is,
they should have mirror-like distortions. To achieve
this, we map the environment onto the surface using
reflected ray vectors cast from the cyclopean point EC¼
(ELþER) / 2 (Figure 1c). Notice that there is no camera
(i.e., no image formation) at the cyclopean point.
Rather, it is used only for mapping (painting) the
environment onto the surface when images of the
surface are rendered from eyes EL and ER, (i.e., the
view vectors used for rendering the stereopair do not
change). Since the mapping process is governed by the
laws of specular reflection, the images will have
distortions similar to mirrors. However, the mapping
does not depend on the true position of the eyes, and
therefore, each surface point will have the same pixel
values in left and right images and can thus be matched
stereoscopically. Moreover, as we describe next, this
approach can be generalized to create stereopairs
whose disparity properties vary continuously between
mirror-like and standard surfaces, while keeping the
monocular properties of the image almost constant.

Virtual illumination mapping

Using the logic of the rendering approach described
above, we can construct artificial stereo images whose
disparity properties range smoothly between mirror
and matte/textured surfaces. For the left eye we map
illumination onto the surface using point vEL (virtual
illumination point for left eye) and vER for right eye

 
determined by the reflection of the view vectors (vR, vL) around the surface normal (n) at point P. The reflected ray vectors xL and xR

point to different locations in the illumination map, meaning that location P has different pixel values in the two images. This is

shown schematically by the rainbow illumination map and the dots behind each eye. Stereograms (right) are presented for cross-

fusion. (C) The rendering process for a painted shape (virtual illumination point, vIP¼ 0). Here the pattern of reflections is

determined using a view ray from the cyclopean point (EC). Tracing out rays from EC across the whole surface produces characteristic

specular distortions, which are then imaged binocularly from the two viewpoints. Note that the stereoscopic frustum is the same as in

(B), the only difference is the location from which pixel intensities are determined. (D) Manipulating the virtual illumination point.

Pixel intensities can be determined from any location along the interocular axis. Here the points from which to determine reflections

are halfway between the eye positions and the cyclopean point.
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(Figure 1d). Virtual illumination mapping points are
placed on interocular axis equidistant from cyclopean
point

vEL ¼ EC þ vIP*ðEL � ECÞ=jjEL � ECjj

vER ¼ EC þ vIP*ðER � ECÞ=jjER � ECjj
where vIP is virtual illumination point index. Note
again that the virtual illumination points are used only
for mapping environment on the surface while actual
images are taken from real viewpoints EL and ER, that
is, viewing vectors are fixed. Condition vIP ¼ 0
corresponds to painted case described above (virtual
illumination points coincide at the cyclopean point). If
vIP¼ 1, then virtual illumination points coincide with
the true locations of the corresponding viewpoints,
leading to standard mirror reflections. Varying vIP
smoothly allows us to construct stimuli with stereo
properties ranging between (or indeed beyond) these
two extremes.

This technique enables stimuli to be generated from
a parametric space of disparity-defined objects. Figure
1 provides examples of three stimuli drawn from the
vIP space, while in Figure 2 we quantify how the

displacement of the highlights from the physical surface
varies as a function of this manipulation to show how
the range of depths in the objects changes as vIP is
manipulated. In this paper, we focus on using such
stimuli to quantify the type of stereoscopic information
available to viewers. However, empirically, the vIP
space lends itself to systematic testing of human
judgments of shape and material. In particular, the
ability to systematically vary binocular signals while
keeping monocular information more-or-less constant
could be exploited to understand the weighting process
by which monocular and binocular information is
combined when observers make judgments about three-
dimensional (3-D) shape and material properties. Here,
we rely on this manipulation to characterize the key
differences between specular and nonspecular disparity
signals.

It should be noted that (Dąbała et al., 2014) recently
presented a similar approach to manipulating stereo-
scopic signals for reflective objects. Their approach was
designed to promote visual comfort in the displays,
using manipulations equivalent to the vIP for each
rendered pixel in the image (meaning that individual
pixels are rendered with from different virtual illumi-
nation points).

Determining specular stereo
matches for an object of known
shape using ray geometry

In the preceding section, we considered the forward
process by which the environment is mapped to left and
right eye images. Here we describe the disparity field
that results when viewing specular objects binocularly,
by solving the correspondence problem for the simpler
case of known geometry. Although of course, stereopsis
usually deals with unknown geometry, in order to frame
the problem correctly and to establish ground-truth
estimates of specular disparity fields, it is useful first to
consider the case with known geometry. In particular,
these ground truth descriptors are based on a forward
model of disparity generation that exploits the known
geometry of the viewed shape. This provides a purely
geometric definition of the available disparity infor-
mation that is independent of the content of the
illumination field. As we shall see, and unlike the case
of standard textured surfaces, for specular surfaces
even when geometry is known, establishing correspon-
dence is not entirely trivial.

To calculate the disparity field we need to solve the
stereo correspondence problem: For each location in
the left eye’s image seek the location in the right eye’s
image that has the same generative cause. For a matte,

Figure 2. Quantifying the effect of manipulating the virtual

illumination point on the divergence between the physical

surface and the virtual surface described by binocular specular

reflections. The graph shows the mean unsigned depth offset

between the physical and virtual surfaces for four potato

objects (spheres randomly perturbed by 100 Gaussian blobs) as

vIP was manipulated. Viewing distance was 50 cm, interocular

separation 6.5 cm, and the objects were approximately 7 cm in

diameter—that is, like looking at an apple or potato at arm’s

length. Depth displacements greater than 10 cm were only

found to originate from unfusible image locations; we therefore

treated them as outliers in calculating the mean offset value.

The vIP manipulation causes a systematic, regular, and

monotonic change in the depths of the stimulus.
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textured object, we can think of this process as two eyes
viewing a particular texture element of the surface of
the object, with the brain charged with establishing
correspondence between the retinal projections of the
texture elements in the two images. In the specular case,
we assume (like previous work on specular stereo;
Muryy et al., 2013) that the definition of correspon-
dence is essentially equivalent; namely, that the visual
system seeks the image feature in one eye that matches
the same image feature in the other eye. Thus, the basic
task is the same (seeking correspondence between
image features); however, in the specular case, these
features originate from the reflection of the environ-
ment illumination map, rather than markings on
surface itself. Given this definition, corresponding
points in the environment yield the same pixel values in
the two images (up to sampling limits).

It is important to note that defining correspondence in
terms of matching image features means that, in general,
the resulting disparities do not lie on the surface in depth
(we explain this observation in detail below). To correctly
reconstruct surface depths would require finding the
projections of corresponding surface features in the two
eyes’ views (e.g., matching extrema of curvature).
However, the definition of correspondence in terms of
matching image features makes more sense given the
optics of mirror reflection. Reflections are virtual images,
whose location in 3-D space is specified by the geometry
of reflection. Importantly, the depth of the virtual images
is therefore consistent across all parallax-based depth
cues (stereopsis, motion parallax, accommodation). For
example, in order to bring the reflections into focus, it is
necessary to focus not at the distance of the surface, but
at the location behind or in front of the surface that is
consistent with the disparity signals.3 Matching corre-
sponding surface features would require favoring
matches that have large interocular differences in the
image values, while suppressing the much better image
matches from the virtual image. Given that this is the
exact opposite of normal stereopsis—for which the visual
system is presumably optimized—it seems intuitively
unlikely that the visual system would prefer surface
matches to image matches, even though it is the surface
matches that would indicate the true physical location of
the surface. This intuition is supported by our previous
findings that when subjects are asked to report the
perceived depths of surface locations, they generally
report depths that are much closer to the virtual surface
than to the true physical surface (Muryy et al., 2013),
implying that the visual system does indeed match image
features rather than surface locations.

While the principles of establishing correspondence
are straightforward, pixel intensity per se is not a
generally useful characteristic for matches because (a)
the environment map may contain repetitive pixel
values (e.g., a picket fence) that correspond to

unrelated reflected ray directions and (b) surface
concavities entail that multiple surface locations can
reflect the same portion of the environment map (e.g.,
the Dom in Figure 1). To define a unique match for
each image location we therefore need to constrain the
solution, the logic for which we now describe.

Reflections depend on the viewpoint, thus the
same surface point P reflects different portions
of the environment to left and right eyes

To start we deal with the simplified one-dimensional
(1-D) case (i.e., a cross-section through a shape; Figure
3), then we expand to finding correspondence in two
dimensions. Given a surface of known shape S with
known normal vectors n¼ n(P), P � S, we can define SL

and SR as the portions of the surface that are visible to
left and right eyes EL and ER. Consider point P on the
surface S; the images of point P in the left and right eyes
are defined by the reflected ray vectors xL and xR (see
Figure 1). According to the law of specular reflection:

xL ¼ 2ðn vLÞnþ vL

xR ¼ 2ðn vRÞnþ vR

where n¼n(P) is the unit surface normal vector (jjnjj¼1)
at point P, and vL and vR are normalized left/right
viewing vectors:

vL ¼ ðP� ELÞ=jjP� ELjj

vR ¼ ðP� ERÞ=jjP� ERjj:
Since the eyes are separated EL 6¼ ER, for a real

mirror surface, the left and right reflected vectors
cannot coincide xL(P) 6¼ xR(P), that is, left and right
reflected vectors must point at different locations in the
environment. Thus, every surface point P forms
different images in left and right eyes. To solve the
stereo matching problem we need to find such points
PL and PR whose corresponding reflected ray vectors
point to the same location in the environment and thus
form the same pixel values in left and right images
(Figure 3a). Assuming the environment is infinitely far
away, it is sufficient to identify reflected ray vectors that
are parallel. In other words, for each point PL � SL

(portion of S that is visible to EL) we need to find a
point PR � SR such that xL(PL)¼xR(PR) (or xL · xR

¼ 0). Treating the environment as infinitely far is a
reasonable simplification; our analysis (see Appendix)
shows that under normal conditions, this assumption
should not lead to significant depth errors. For some
portions of the surface, solutions do not exist while for
nonconvex shapes there may be multiple solutions. We
address such situations below.

Journal of Vision (2014) 14(14):14, 1–26 Muryy, Fleming, & Welchman 6



Rather than considering a single reflected ray, let us
move on to consider the set of all possible reflected ray
vectors. In principle, the space of reflected ray vectors
may cover the entire sphere of possible directions (if the
viewpoint is infinitely far from the object). However,
generally the reflected ray vectors will occupy only a
subspace of the sphere of possible directions. The
subspaces of reflected vectors for left XL ¼X(SL) and

right XR¼X(SR) eyes do not completely coincide, that
is, XL 6¼ XR (however, there is considerable overlap,
Figure 3b). It is clear that the stereo-matching solutions
exist only for points whose reflected ray vectors
overlap. In other words, the solution to the stereo-
correspondence problem exists only for surface points
from SL

0 � SL and SR
0 � SR where SL

0 and SR
0 are such

that EL:SL
0 � X0 and ER:SR

0 � X0 where X0 ¼XL ˙

Figure 3. Establishing stereo correspondence. (A) Calculating binocular disparities depends on matching locations that point to the

same place in the illumination map. Here, points PL and PR of surface S reflect same portion of the environment to eyes EL and ER.

This correspondence can be identified by finding reflected ray vectors xL and xR that are parallel (note that this occurs even though

the normals nL and nR are different, because of the difference of view position). Notice that different portions of the surface (SL, SR)

are visible to the two eyes—denoted by the shaded regions around the surface. (B) The differences in the visible portions of the

surface mean that different portions of the illumination map are visible to the two eyes, leading to unmatchable features. This is

described as the set of reflected ray vectors XL, XR. The intersection of these reflected ray vectors (X0) defines the space within

which binocular correspondence can be established.

Journal of Vision (2014) 14(14):14, 1–26 Muryy, Fleming, & Welchman 7



XR. Each point of SL
0 must have a corresponding

stereo match SR
0, that is, � PL � SL

0 � PR � SR
0: xL(PL)

¼ xR(PR) where xL � X0, xR � X0. Thus we have a
formulation for the regions within which to establish
stereo correspondence.

The corollary of this is that for points outside SL
0

and SR
0 stereo matches do not exist. In the simple case

of a sphere, this absence of correspondence is similar to
‘‘da Vinci occlusion’’ (Nakayama & Shimojo, 1990)
where the edges of a solid objects are differentially
visible for the two eyes. Note, however, that there is an
important difference for the specular case in that these
areas are more pronounced because reflected vectors
vary faster than surface normals. However, as we
discuss next, for surfaces that have concave regions,
areas of missing stereo correspondence are not limited
to the physical edges of the object.

Having illustrated the problem in a 1-D slice, we now
move to the two-dimensional (2-D) case (Figure 4). If a
viewed reflective surface has concavities, the reflected
ray vectors are not unique because different surface
points can reflect the same portion of the environment
(e.g., the Dom in Figure 1). In consequence, the global
solution will generally not be unique, that is, for single
PL there may be multiple stereo matches PR1, PR2, . . .,
PRn such that xL(PL)¼ xR(PR1)¼ . . . ¼ xR(PRn); this
poses a challenge in deciding which match to choose.
We suggest taking a local match whereby correspond-
ing points PL and PR belong to a smooth surface patch.

Let us consider point P on the surface and construct
around it patches SL and SR, which project uniquely to
the space of reflected ray vectors XL and XR (Figure 4).
The edges of these patches will be very close to (although
not coincident with—see Footnote 2) the inflection

contours of the surface where the sign of curvature
changes and thus the normal vectors reverse. Beyond the
boundaries there are areas where no stereo solution exists
because of ‘‘da Vinci’’-like differences in the portions of
the environment visible to the two eyes; note, however,
that these regions are not limited to a shape’s physical
boundaries but can occur in the center of the visible
portion of the shape. In other words, inflection contours
naturally divide a nonconvex specular object into patches
with locally smooth disparity fields, which are separated
by regions of unmatchable features, for which disparity is
undefined. Such regions create difficulties for machine
and human vision as stereo cues specify internal contours
where no depth is defined despite monocular image
features being contiguous. We illustrate the presence of
these internal boundaries in the disparity field in Figure
5, where we constructed painted and specular stereo-
grams of a 3-D shape reflecting an illumination of
uniformly sized spheres. This illumination map provides
a clear illustration of the way in which environmental
features are distorted by reflections—changing the
isotropic illumination into patches with local orienta-
tions. For the specular case, the different environmental
features visible to the two eyes produce locations where
binocular disparity is undefined. These internal contours
divide the shape into a series of smooth islands where
disparity is defined.

While the surface patches SL and SR overlap
considerably, they do not coincide perfectly because the
reflected vectors depend not only on surface normals but
also on the viewing vectors, which are different for left
and right viewpoints. In consequence, we can find the
overlap of reflected ray vectors X0 ¼XL ˙ XR and then
project this overlapping region back into left/right

Figure 4. Finding correspondence in two dimensions. We can construct surface regions around point P for which stereo solutions

exist. Portions SL and SR of surface S are visible to eyes EL and ER, and they reflect portions XL and XR of environment X. Their

intersection of X0 ¼XL ˙ XR contains reflected ray vectors that are visible to both eyes, thus defining the space within which to

identify stereo matches. Defining this surface patch provides a local region within which to identify correspondence: For each point of

SL
0 there must exist a specular stereo match in SR

0, where SL
0 and SR

0 are portions of surface S which reflect X0 to EL and ER.

Journal of Vision (2014) 14(14):14, 1–26 Muryy, Fleming, & Welchman 8



surface patches SL
0 and SR

0 (Figure 4). For each point in
SL

0 there must exist a unique stereo match in SR
0, and

through surface smoothness, this mapping must be
continuous and the corresponding disparity field should
also be smooth. Thus, conceptualizing the reflected ray
vectors in this manner allows us to ensure a local match
where corresponding points arise from surface regions
with similar topological properties between the two eyes.
While other global matches are possible (e.g., other
copies of the Dom Tower), such matches would
generally belong to a surface patch with qualitatively

different surface structure and thus such matches would
not provide useful information about local surface
geometry. Moreover, such matches would cross inflec-
tion contours, often resulting in large binocular dispar-
ities that can exceed the human limits for fusion.

To summarize the process of identifying the space of
binocular correspondences with known surface shape:
For a fixed viewing geometry, the entire surface of an
object is naturally divided into patches for which stereo
matches are smooth. These patches are separated by
areas for which no local solution exists, and while

Figure 5. Illustration of piece-wise smoothness of the disparity field. We rendered a 3-D object with concavities under an isotropic

illumination map containing spheres. This allows a clear visualization of the distortions introduced by specular reflection—that is,

regions in which there is a rapid change in the reflection vectors result in elongated features on the surface of the object. These

regions align with piece-wise smooth patches for an object with a specular surface. Outside these islands, disparities can become very

large and are often undefined. Stereograms are presented for cross-fusion.
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global stereo matches for the margins SL – SL
0 and SR –

SR
0 may exist, they should be filtered out.
Using these ideas, the stereo matches for a specular

surface of known geometry and for given viewing
geometry can be found computationally using an
iterative approach. In particular, we could construct
regions of unique solutions SL

0 and SR
0 and then

compute one-to-one correspondence between them. In
practice it is usually computationally simpler and more
flexible to find all the potential matches first (including
global ones) and thereafter filter out the inappropriate
global matches. This has the advantage that specific
criteria can be used to determine which matches are
filtered out, for example, to select only those matches
that could in principle be measured by the human
visual system. To this end, we have implemented a
matching algorithm by constructing a grid of points on
surface region SL that is visible to the left eye, and then
for each point PL of that grid, we find (through brute
force search), corresponding points PR � SR that satisfy
jxL(PL) – xR(PR) j , c, where c is the numerical
precision with which we can measure nonzero values
(Figure 6). Specifically, correspondence is found by
searching for such locations that left and right reflected
ray vectors become parallel (within double floating
point precision). Note that this approach generalizes to
arbitrarily fine grid resolutions (again, within numerical
limits).

Given the resulting set of multiple candidate matches
for PR, we find a unique match by selecting the one that
is closest to PL (i.e., minimizing disparity). This method
gives us all the stereo matches. However, not all of
these stereo matches will be fusible. In particular, there
are limits on disparity gradients for stereopsis (Burt &
Julesz, 1980; Tyler, 1975) and limits on the vertical
offsets between matched features (Qin, Takamatsu, &
Nakashima, 2006; Van Ee & Schor, 2000). In order to
visualize those disparities that fall within these limits, in
Figure 6 we show the subset of matches that are likely
to be fusible by the human visual system.

This analysis shows that reliable stereo matches form
local patches with smooth and continuous mapping
surrounded by narrow areas that are likely be
unfusible. Notice also that unfusible regions corre-
spond to regions of low Gaussian curvature (as
indicated by the surface color map), that is, regions
around inflection contours where at least one of the
principle surface curvatures changes its sign and thus
surface normal vectors reverse.

Correspondence is not limited to epipolar lines

As can be appreciated from the vector field
connecting binocularly corresponding points on the
surface of a 3-D object in Figure 6, corresponding

points can be shifted with respect to each other in any
direction depending on topological properties of local
surface patch. This makes the specular disparity field
different from Lambertian objects for which disparity
vectors are strictly limited to epipolar lines. These
omnidirectional offsets are a consequence of the fact
that the viewing vectors do not intersect in 3-D space;
thus points of correspondence are not found along
epipolar lines. This is important for image-based
methods of finding corresponding points because such
methods often rely on an epipolar constraint and would
therefore fail with specular reflections. We address
these issues in detail in the Section on using a
correlation-based method for finding stereo matches
(below). The presence of potentially large nonepipolar
disparities can dramatically influence fusibility in
human stereo vision, meaning that even smooth local
matches can present difficulties for stereopsis. There-
fore, large portions of mirror reflective surfaces may be
binocularly undetermined because either stereo
matches do not exist or nonepipolar offsets are
excessively large for human stereo correspondence.

The relationship between second-order surface
structure and disparity magnitude

One final observation to make based on calculating
disparities by matching view vectors is that there is an
approximate relationship between curvature-like sur-
face properties and the magnitude of the offset between
matched locations on the surface, n¼ PR – PL (Figure
6). This comes about because when there is a high rate
of change of surface normal directions, the reflected ray
vectors sweep rapidly through the surrounding world,
so that a small distance on the surface will encompass a
large portion of the environment. Others have also
noted important relationships between second-order
surface structure and disparity magnitudes and signs
(e.g., Blake & Brelstaff, 1988; Blake & Bülthoff, 1991).

For illustration, consider a fixed point PL on the
surface and suppose we need to find corresponding point
PR. Matching points cannot coincide on the surface;
therefore, to find amatch we need to movePR away from
PL until corresponding reflected ray vectors match. As
we move point PR away, the viewing vector vR(PR) and
surface normal n(PR) vary, and the faster this happens,
the lower the distance required before ray vector xR

meets xL. Conversely, for regions of low curvature, the
surface normals barely change across local surface patch,
meaning that a larger distance over the surface of the
object is traversed before a match is found. In the
extreme case of a nearly planar surface, disparities
become very large indeed. Describing the relationship
between surface curvature (an intrinsic object property)
and disparity (a viewer property) is necessarily approx-
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imate because, as described in the Section on Specular

and Lambertian illumination mapping, the view vector

depends on both the viewer’s location and the surface

topology. While this statement is always true when

seeking relationships between image cues and physical

properties of an object, it is more critical for specular

reflections because reflected ray vectors vary faster than

the surface normals. Thus, approximations relating 3-D

structure to, for instance, texture patterns are more

robust than the equivalent case for specular reflections.

Figure 6. Illustration of corresponding points mapped onto an object’s surface. We show corresponding points (PL, PR) identified by

matching reflected ray vectors. A regular grid of points in the left eye image (orange) are matched to points in the right eye image

(green). We connect these points to provide a vector flow representation where the color of the connecting line (red or blue)

indicates the sign of the disparity. This vector map is plotted on top of a color map that shows the intrinsic Gaussian curvature of the

underlying surface. To aid visualization and avoid overcrowding the figure, we down-sampled the matches and displayed only matches

with cyclopean separation less than 12 arcmin. The shapes are examples of potato objects (;7 cm in diameter), viewed from 50 cm

with an interocular spacing of 6.5 cm. These were mathematically defined in spherical coordinates, and sample locations are

therefore uniform in spherical coordinates (i.e., not regular in the image plane). Sampling in this way allowed us to estimate precise

surface normals analytically. This precision was critical because even very small errors in surface normal calculations (which would be

unavoidable if we had sampled in the image plane and used numerical methods for surface normal estimation) may lead to large

errors in reflected vectors. Our calculations of ground truth matches sampled the visible hemispheres of the shapes (1808 · 1808)

very densely (512 · 512 samples). The results shown here are down-sampled considerably for visualization.
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A correlation based method for
finding stereo matches in binocular
images of a specular object

In the previous section we explained how specular
stereo matches can be found assuming the surface is
already known. In general, however, surface geometry is
unknown so stereo matches need to be determined from
binocular image pairs. Here we describe an approach for
calculating disparities from binocular images of specular
objects to provide a proof of computational principle
and a cross-validation of the forward model approach
we took in the previous Section.

To extract disparities, for each pixel in the left image
we need to find a pixel in the right image that reflects the
same portion of the environment. Consistent with
models of standard (nonspecular) stereopsis (Banks,
Gepshtein, & Landy, 2004; Bolles, Baker, & Hannah,
1993; Cormack, Stevenson, & Schor, 1991; Cumming &
DeAngelis, 2001; Filippini & Banks, 2009; Fleet,
Wagner, & Heeger, 1996; Harris, McKee, & Smallman,
1997; Kanade & Okutomi, 1994; Ohzawa, DeAngelis, &
Freeman, 1990), we take the approach of identifying
correspondence based on correlations between image
neighborhoods. Specifically, corresponding pixels are
those whose local surroundings correlate most strongly
between left and right views. Matching pixel to pixel can
be time consuming, and in order to optimize this search,
conventional algorithms exploit the epipolar constraint,
which reduces the area of potential matches to a line
(Prazdny, 1983). However, as noted above, specular
stereo violates the epipolar constraint and matches can
occur anywhere in the image. Given that only local
matches make geometrical sense (from a generative
perspective, see the preceding subsection on ‘‘Reflec-
tions depend on the viewpoint’’). we suggest searching
for solution within 6e of the epipolar line, where we
have defined e ¼ 12 arcmin for shapes we used.

To find corresponding locations, we used a method
where for any left eye image location, PL, we
constructed the corresponding epipolar line in the right
image (Figure 7a). We then searched for corresponding
points by taking a square subimage region (length¼ 6
arcmin / 25 pixels) around sample point PL in the left
image and calculated the pixel-based correlation for all
similar subimages along the epipolar line in the right
image. (The size of the subimage is somewhat arbitrary;
we selected a value that would capture fine detail and
wanted to avoid the additional parameters of a
multiscale approach). This created a correlation map
centered on the epipolar line (Figure 7a). By default we
searched for correspondence by applying a tolerance of
612 arcmin (648 pixels) around the epipolar line based
on experimental results on human fusibility limits for
vertical offsets between the two eyes (Qin et al., 2006;

Van Ee & Schor, 2000). We selected corresponding
points as the peak of the correlation landscape in the
right image for point PL, which typically gave rise to a
close match between the subimages from the left and
right images (Figure 7b). By systematically manipulat-
ing the tolerance value (e) we examined how critical this
was in establishing correlation-based matches that were
close to (60.25 arcmin) those identified based on the
ray-matching forward model approach (Figure 7c).

To demonstrate the approach, we rendered stereo
images of specular objects in retinal angular coordi-
nates with high resolution such that 1 pixel ¼ 0.25
arcmin with a 50-cm viewing distance. We converted
images into grayscale by averaging the RGB channels,
and then constructed a grid of 104 · 104 sample points
in the left image (Figure 8). Note that the grid is
uniform in terms of the angular coordinates of the
shape, not in terms of image coordinates, although the
precise choice of locations to test is arbitrary: Other
locations could also have been tested given sufficient
mathematical precision (see Figure 6 caption).

As a sanity check on this approach, we first applied
this algorithm to a painted version of the object (i.e., one
with mirror-like monocular appearance, but whose
disparities lie on the surface, like a matte textured
object). We found very good correspondence with the
ground truth depths (Figure 8), indicating that when
disparities are well defined, our correlation-based
matching algorithm provides good results. We then
calculated correlation-based stereo matches for a spec-
ular version of the object, and compared the results with
those derived from the reflected-ray based approach
(preceding Section), which we defined as ground truth
for the disparity signals available from these images. The
correlation-based approach recovers features of the
disparity structure that are similar to the ray-based
approach with known geometry. In particular, for well-
defined islands within the shape, there is a good
correspondence between the recovered disparities and
the ground-truth stereo matches. However, in other
portions of the shape there is poor correspondence (i.e.,
correlation at the best match was low, suggesting
residual errors in the match). Importantly, these regions
corresponded to the locations where disparity was
undefined and for which no local solution exists in the
ground truth. Thus, the correlation-based method with
unknown geometry, and reflected-ray approach with
known geometry yield broadly similar results.

The correlation-based method we have used is not
sophisticated and is slow (97 times slower than it would
take for a Lambertian object with standard epipolar
constraints). Many other existing stereo algorithms are
likely to be more efficient or accurate (for a recent
review of such work which assesses the relative merits
of different algorithms on benchmark tests, see Baker
et al., 2011). However, the results of our method
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Figure 7. Establishing stereo correspondence for specular objects using a correlation method. (A) For a given point, PL, in the left eye

image, we searched for a match along the corresponding epipolar line in the right eye image. The algorithm correlates gray-level

image intensities for a subimage region in PL with all the possible locations along the epipolar line in the right eye image.We vary the

tolerance around the epipolar line in which to search for corresponding locations. The peak of the correlation map is selected as the

corresponding location. (B) Identified corresponding locations typically have similar image structure (here, R ¼ 0.96). (C)

Systematically varying the search zone around the epipolar line reveals that allowing some tolerance is important when finding

corresponding locations for specular objects. When the search zone is 612 arcmin of the epipolar line, the match between the

ground-truth forward model and the correlation approach approaches the best achievable (i.e., saturating function) for the shapes

and viewing situations we have considered. Good matches are those with correlation solutions that lie within 60.25 arcmin of

solution based on matching reflected ray vectors. The function saturations around 0.7 as some portions of the shape are unfusible

based on the ray-matching approach—see Figure 6—so matches are beyond the search zone of 12 arcmin and can therefore never be

good (i.e., viewers would not be able to extract the disparity information from these locations).
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correspond well to the ground truth, which demon-
strates that in principle stereo information from
mirrors is available for machine vision, through a
simple generalization of standard stereo-matching
approaches. We consider this a proof of concept that
specular disparities can be robustly calculated from
images of unknown surfaces. The most conceptually
significant difference between our approach and
existing methods—which are optimized for standard
stereopsis—is that we do not restrict search for matches
to epipolar lines. To evaluate the extent to which this

alters performance, we measured how close the image-
based matches are to ground truth as a function of the
size of the tolerance around the epipolar line (Figure 7c;
Movie 1). Enabling matches that deviate from the
epipolar line is clearly very important for achieving
accurate matches, although increasing the search
window beyond the limits of human fusibility would
yield diminishing returns (the curve saturates).

One other advantage of a simple correlation-based
matching approach is that additional information can
be acquired from the magnitudes of the correlations

Figure 8. Stereo matches calculated using a correlation-based image method. We sought to establish correspondence using an image

correlation approach. We started with a regular sample grid in the left eye and then identified corresponding locations in the right

eye. (Note that the grid is uniform in the spherical coordinates of the shape, rather than in the image plane, matching our analysis in

Figure 6). We show results for a painted shape and a specular rendering of the same shape. We superimpose matched locations

identified from ray geometry (blue dots) with those identified using the correlation method (red dots). For the painted case, there is

very good correspondence between the two. For the specular, there is good correspondence for local surface regions; however, in

other regions where disparity is undefined (as per the reflected ray analysis with known object geometry), the correlation method

produces spurious matches. These regions are likely to pose a similar challenge to the human visual system—see Figure 4. Movie 1

shows the matches for the specular object with different amounts of tolerance for matches with respect to the epipolar line.

Journal of Vision (2014) 14(14):14, 1–26 Muryy, Fleming, & Welchman 14



associated with the best match. Where the correlation is
very high, the quality of the match is good, but where
the view geometry leads to substantial deviations in the
pattern of reflections between the two eyes, the
maximum correlation will likely be lower, indicating a
poorer quality match. In principle human or machine
vision could exploit information about the quality of
matches to weight the signals derived from different
surface locations. Indeed, we have argued that the
visual system prefers to interpolate across regions
where the disparities are too unreliable, yielding
smoother estimates of the disparity field (Muryy et al.,
2013). For the remainder of the article we use the
ground truth solutions based on known geometry.

Ortho-epipolar distances and their
potential use as a shape cue

For a Lambertian object, binocular correspondence
falls along epipolar lines, but as discussed in the
preceding Section, for specular surfaces this does not
have to be true. Specular stereo matches generally fall
some distance away from the epipolar line, depending
on the orientation of the offset vector n ¼ PR – PL

between the corresponding points on the surface. The
closer this vector is to coplanar with interocular axis,
the closer the stereo match is to the epipolar line.
Intuition suggests that the nonepipolar signals are not
randomly distributed across the surface but are
systematically related to specific geometrical properties.
In this section, we describe how the relationship
between surface and view geometry leads to unusual
patterns of disparities, quite unlike those seen with
standard matte/textured surfaces. A vision system
could in principle use these nonepipolar disparities to
infer additional information about the shape of the
surface that generated the signals.

To start, consider a generic local surface patch,
which has different curvatures in different directions
(i.e., it is nonspherical). Along the direction of highest
curvature, corresponding reflected ray vectors tend to
match up quickly, and thus projection of the offset
vector onto the direction of maximum principal
curvature is likely to be smaller than its projection onto
the direction of minimal curvature (see the preceding
subsection on ‘‘The relationship between second-order
surface structure and disparity magnitude’’). Thus, at
first glance one may think the offset vector n should be
oriented primarily along the minimal principal curva-
ture (Figure 9a, b). However, as shown in Figure 9c,
when the minimum principal axis is vertical (i.e., zero
curvature is orthogonal to the interocular axis), the
matches are also horizontal, because the depth varia-
tions reduce to 1D. This demonstrates that surface
curvature influences deviations from epipolar geometry
in a way that is very different from matte-textured
surfaces. More generally, however, surface geometry
alone cannot fully predict the orientation of the
disparity vector because reflected ray vectors depend on
viewing vectors as well as on surface normals. Thus, the
problem of offset vector orientation cannot be formu-
lated in purely object-centric terms such as curvature,
but must also include viewing geometry.

In order to determine the extent to which specular
surfaces violate the epipolar constraint, we calculated
the ortho-epipolar distance (i.e., image distance between
the match point and corresponding epipolar line; Read,
Phillipson, & Glennerster, 2009) for every matched pair
of points in an image. Figure 10a shows the results.
Superimposed contours represent points where viewing

Movie 1. To complement the results shown in Figures 7 and 8,

this movie illustrates how changing the tolerance for non-

epipolar matches changes the spatial consistency between

matches based on ray geometry and image correlation. The

image patch corresponds to the local region shown in Figure 8.

Different frames of the movie show difference positive and

negative tolerances around the epipolar line—from zero (strict

epipolar) to a search zone of 24 arcmin centered on the

epipolar line (12 arcmin tolerance). Notice that as the tolerance

increases, more red dots line up with blue dots. However, there

is never a perfect match because for some locations on the

shape disparities become very large or are undefined—see

Section on Determining specular stereo-matches using ray

geometry.
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vectors intersect and thus ortho-epipolar distance is
zero. These singularities are especially interesting be-
cause they relate to the orientations of the offset vectors
(i.e., the 2-D vector between corresponding points in the

two eyes’ views, for a given vergence angle) and through
these to surface and viewing geometries.

In order to incorporate viewing geometry into the
analysis, we constructed a depth map of the object from

Figure 9. The orientation of disparity vectors for different viewing geometries. Here we show corresponding reflection locations on

the surface of a cylinder at different rotation angles. In (A), the direction of minimum curvature is orthogonal to the interocular axis

and the resulting disparity contains no vertical component. At oblique orientations (B), the vertical component of the offset between

the two eyes can be considerable. Intuition might suggest that the orientation of the offset vector between corresponding surface

locations is relate to surface curvature; however, (C) demonstrates that matches are horizontal when the direction of zero curvature is

aligned with the interocular axis. Therefore, a formulation that incorporates viewing geometry is needed to capture the relationship

between the magnitude of ortho-epipolar disparity components and the viewed shape.
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the cyclopean viewpoint and computed the eigenvectors
of the Hessian matrix of this depth map (Fleming,
Torralba, & Adelson, 2004, 2009). The Hessian matrix
captures the rate of change of surface normal as a
function of distance in the image, and therefore
incorporates information about both viewing and
surface geometries. The eigenvectors of the Hessian
matrix are orthogonal to one another in the cyclopean
image plane, and represent the directions in which
surface normal changes fastest (direction of maximum
second derivative) and slowest (direction of minimum
second derivative), respectively. For example, for a
patch of surface that is locally cylindrical, one
eigenvector direction runs in a straight line along the
axis of the cylinder, whereas the other runs orthogo-
nally around the circular cross-section of the cylinder.
If either one of these two eigenvectors is parallel to the
interocular axis, then ortho-epipolar distance tends to
zero. In other words, if the cylindrical patch is either
horizontal or vertical relative to the eyes, then matches
for that location will lie on epipolar lines, just like in
standard stereopsis. Figure 10 demonstrates this
correspondence—note that areas of zero ortho-epipolar
distance correspond to zero orientation. In terms of the
mirrored cylinders considered in Figure 9, if the axis of
the cylinder is either parallel to—or orthogonal to—the
interocular axis, then disparities are purely epipolar. In
general, all other locations tend to have nonzero ortho-
epipolar components, unlike standard stereoscopic
matches, which always lie on epipolar lines.

This observation has one potentially interesting
consequence for shape reconstruction from specular
disparities. An artificial vision system could, in

principle, use the loci of epipolar matches as additional
constraints on the second-order properties of the
generating surface at those locations, as it indicates that
the eigenvectors must be parallel or orthogonal to the
interocular axis. In practice, however, it seems rela-
tively unlikely—but not impossible—that the human
visual system makes use of this constraint, at least for
the estimation of metric second-order properties. In our
previous work we find that where features are easily
fused, subjects tend to take the resulting depth
estimates at face value, incorrectly interpreting them as
the true surface locations (Muryy et al., 2013). We
suggested that ortho-epipoplar components indicate
the underlying disparities are unreliable. Within this
framework, epipolar matches provide the most reliable
disparity signals. If the human visual system applied
this constraint appropriately, then inconsistencies
between depth signals, and the inferred second-order
surface constraints should veto, or at least influence,
the resulting depth estimates, but they do not. This
suggests the visual system does not exploit this
constraint. Nevertheless, the constraint could prove
useful for artificial vision systems.

Distinguishing specularities from half-occlusions

Unmatchable features or pseudomatches that infringe
epipolar geometry can be created not only by specular
reflections, but also by half-occlusions (Da Vinci
stereopsis). How then might the visual system distin-
guish between these two quite different physical causes?
Occlusion is substantially more common than specular

Figure 10. The relationship between surface/viewing geometries and ortho-epipolar distances. (a) A plot showing locations for which

ortho-epiplar distances are zero. (b) A plot showing locations at which the orientation of either of the two eigenvectors of the Hessian

matrix of a depth map of the object is parallel to the inter-ocular axis (loosely speaking, the directions of the principal curvatures of

the surface in a view-centered coordinate system). The correspondence between the two suggests second-order surface properties

play a key role in determining where specular stereo conforms to the epipolar constraint.
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reflection in the natural environment, so one possibility
is that the visual system treats unmatchable features (or
nonepipolar pseudomatches) as evidence of occlusion by
default, and that it is only inconsistencies between
binocular and monocular cues to occlusion that veto this
interpretation. Even in the absence of monocularly
visible boundaries, binocular occlusion cues—such as
unmatchable (or incorrectly pseudomatched) line ter-
minators—are strong enough to yield vivid illusory
contours, and constrain the orientation and depth of the
illusory occluder (Anderson, 1994; Gillam & Grove,
2004; Grove, Brooks, Anderson, & Gillam, 2006; Grove,
Byrne, & Gillam, 2005). In general, however, unmatch-
able features caused by occlusion occur more frequently
on the left and right flanks of an object, and tend to be
spatially aligned with monocular occlusion cues. In
contrast, those created by specular reflections can occur
at arbitrary locations in the center of the object. Indeed,
the unmatchable features (or regions with very large
ortho-epipolar components) created by specular reflec-
tions generally do not lie close to occlusion events,
instead occurring in locations where there are clear
monocular indications of a continuous surface. Thus,
the presence of unmatchable features at locations where
monocular cues are inconsistent with occlusion, could
provide a reliable indicator that specular reflection (or
some other surface-related physical process, like refrac-
tion) is the underlying cause.

An alternative possibility is that there is something
about the pattern of the unmatchable features them-
selves that indicates that occlusion is an improbable
interpretation. When occlusion is the cause, unmatch-
able features are typically narrow, elongated areas
along the contour, flanked by clearly fusible regions, as
the binocularly visible portions of matte surfaces are
easily matched, yielding reliable disparity signals. By
contrast, with specular reflections, unmatchable regions
are not constrained to be elongated in shape, and, more
importantly, fusibility usually declines progressively
towards the unmatchable region. Unmatchable regions
in the middle of specular surfaces are typically
surrounded by areas of partial fusion, with increasingly
large disparity gradients or large ortho-epipolar com-
ponents to the disparities. Thus, the visual system could
use both monocular cues and the spatial context of the
unmatchable features to determine their origin.

To illustrate these properties, Figure 11 shows
epipolar and ortho-epipolar disparity fields and the
epipolar disparity gradient (i.e., the gradients of the
epipolar disparities along the epipolar lines) for painted
(vIP¼ 0), mirrored (vIP¼ 1) and midway between these
stimuli (vIP¼ 0.5). Notice that disparities reach extreme
values at the edges of reliable patches, which is in line
with the formal definition (see Section on Determining
specular stereo-matches for an object of known shape
using ray geometry) that there is no reliable depth

beyond these patches. Notice also the magnitude of the
ortho-epipolar disparities can be quite large for both vIP
¼ 1 and vIP¼ 0.5, while it is everywhere zero for the vIP
¼ 0 case. Gradients of epipolar disparity are also large at
the edges of the smooth local patches: These are likely to
pose a challenge to the mechanisms of binocular fusion
(Burt & Julesz, 1980).

Interpretation of stereo matches as
virtual surface depths

Corresponding ray vectors are typically skewed

Having identified stereo matches, it is useful explore
how depth values could be calculated from the image
disparities. For standard stereopsis with matte/textured
surfaces and known vergence, calculating depths from
corresponding points is straightforward trigonometry.
However, for specular surfaces, the image depends on
the interaction between the viewpoint and the proper-
ties of the local surface patch. This has the important
consequence that corresponding vectors are, in general,
skew and thus do not intersect in 3-D space (Figure 12).
Thus, depth values cannot be trivially derived for a
given stereo match, because there is no unique point of
intersection between the two eyes’ views. Therefore,
there is, in principle, complete ambiguity about where
the depth of the match should lie as correspondence
could be established at any point along the view rays
for the two eyes (Van Ee & Schor, 2000). Despite this,
the human visual system appears able to select from
these potentially ambiguous matches giving rise to an
impression of binocular depth.

To arrive at a depth estimate, we have to define a
location in space that should be considered the
triangulation point. One possible solution is to calculate
the shortest midpoint between skew viewing vectors (i.e.,
the point at which they pass closest to one another) and
consider such a point as a depth estimate. Although this
makes intuitive sense from a geometrical standpoint, it is
unclear how a visual system would be able to calculate
such a property. We therefore take the approach of
projecting viewing vectors into the fixation plane where
they must intersect. We can establish matches based on
this projection, and thereafter project the point of
intersection back onto the viewing vectors for the two
eyes. This establishes two depth locations (one each for
left- and right-eye views). We then take the mean
location in 3-D space as the depth solution. While this
strategy may sound convoluted, it is equivalent to
estimating depths by ignoring the ortho-epipolar com-
ponent of the disparity. Measurements of human depth
matches for specular objects suggests that this strategy
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provides a close approximation to human depth
perception (Muryy et al., 2013). As ortho-epipolar
disparity does not indicate depths in standard stereopsis,
it is perhaps unsurprising that the visual system ignores
it for specular reflections.

Characteristics of the virtual surface

Having established points of correspondence be-
tween the (generally ambiguous) disparity values

provided by specular reflections, we can trace out a
virtual surface in depth. In this section, we characterize
some of the properties of the virtual surfaces produced
by specular objects and report three interesting
properties. To illustrate these points we show examples
in Figure 13 of the virtual surfaces for two different
types of 3-D objects: (a) a ‘‘muffin’’ object that is based
on a sphere that has been very subtly distorted by
applying low amplitude sinusoidal deviations to the
depth profile with the result that the object is convex
but has slight corners; and (b) a ‘‘potato’’ object that is

Figure 11. Example disparity fields of an irregular 3-D object (a potato). We show maps of epipolar disparity, disparity gradients along

the epipolar lines, and ortho-epipolar disparity for three different vIPs: painted vIP¼0 (top row), vIP¼0.5 (middle row), and specular

vIP¼ 1 (bottom row) versions of an irregularly shaped object. The object is viewed along the depth axis; x-, y-image locations are in

centimeters. The red-blue color code indicates the magnitude of each quantity (color bars are scaled for each column). Notice that

there is a greater range of values for all quantities for nonzero vIP stimuli. This is particularly marked for ortho-epipolar disparity

signals. Gaps in the maps are regions for which disparity is undefined or exceeds the fusion limits of the human visual system.
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globally convex, but whose surface contains local
concavities. For the muffin object, stereo matches are
smooth, and thus the virtual surface exists everywhere
except at the object edges, that is, there are no
discontinuities in the middle of the disparity field. This
is not true for the potato object whose virtual surface
contains a number of discontinuities.

First, notice that the properties of the virtual surface
can be qualitatively different from the physical surface
that generated them. In the case of the muffin object,
the physical surface is very close to a sphere and has no
concavities, yet the virtual surface contains concavities
and a much more pronounced rippled depth structure
than we might intuit from looking at the structure of
the object. While this might appear surprising at first
glance, recall that the virtual surface is a product of
reflections that vary twice as fast as the surface normals
(see subsection on The rendering process for an ideal
mirror). Second, the virtual surface can be highly
sensitive to small variations of viewing and surface
geometries, especially those parts of the virtual surface

that correspond to regions of low physical curvature
(because the offset vector is longer there, shifts of
corresponding points result in larger jumps in depth),
while regions that correspond to high physical curva-
ture remain more stable.

A third interesting property of the virtual surface is
its piece-wise smoothness, which comes from piece-wise
smoothness of the stereo matches (potato in Figure 13).
Notice that for convex regions, the virtual surface is
typically behind the physical surface in depth, while for
concave physical patches, it appears in front of the
surface. This relationship between the physical surface
shape and depths is strict in 2D (where viewing vectors
must intersect) but can, under specific (rare) conditions,
be infringed in 3D. With increasing curvature of the
physical surface, the virtual surface approaches the true
surface depths. By contrast, as curvature approaches
zero, the virtual depths deviate further and further
from the depths of the physical surface: further behind
in the case of convex physical surface patches, and
further in front for concave patches. This has the

Figure 12. Establishing depth locations for skewed view rays. Rays reflecting the same portion of the environment are not constrained

to epipolar lines meaning that they can pass each other in 3-D space without defining a unique point of intersection. Establishing the

depth corresponding to the left and right eye views is therefore undefined on the basis of simple trigonometry. We illustrate this in

three dimensions. The observer fixates point F. Consider surface locations PL and PR that point to the same location in the

illumination map. Extending the view vectors (vL and vR) to determine the depth of the matched feature of the illumination does not

define a unique location in 3-D space because the vectors pass each other. We therefore establish depth by projecting vL and vR into

the fixation plane where there is an intersection. This intersection location is then projected back onto the view rays to define a

virtual point for the left and right eyes (AL and AR). The depth of virtual point (A) is defined as the average 3-D location of AL and AR.

Assuming the visual system uses only the horizontal component of the disparity is equivalent to projecting the view vectors into the

fixation plane. Figure adapted with permission from the supplementary information of Muryy et al. (2013).
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important consequence that near inflection points (see
Footnote 2) of the physical surface, the virtual surface
contains a singularity and undergoes a dramatic jump
in depth from far in front to far behind the surface,
somewhat like a tangent (tan) function (Figure 13).
This means that undulating low-curvature mirrors yield
extreme depth signals, often outside the range that can
be computed by human vision.

Discussion

Our goal with this investigation was to provide a
detailed and formal description of specular stereopsis
to identify how it deviates from standard stereopsis. In
so doing, we also sought to shed light on when and why
human binocular surface depth estimation sometimes
fails when viewing purely specular surfaces. Our

Figure 13. Illustrations of the virtual surface of a sphere, a near-spherical (muffin) and irregular (potato) object under different

degrees of rotation with respect to the viewer. The depth of the virtual surface defined by specular reflections (central column)

becomes increasingly complex as local deviations in the surface are introduced. Even for the muffin, which is only a very slight

deviation from a sphere (inspect cross section on right of Figure), the variation in the depth profile of the virtual surface (orange line)

becomes quite pronounced. Viewing distance was 50 cm, and interocular separation 6.5 cm. The sphere had a diameter of 7 cm. The

muffin object was created by adding nine sinusoidal bumps (corners) to a 7-cm diameter sphere in the azimuthal direction, while

applying a weighting term to the bumps to ensure that the shape remained convex.

Journal of Vision (2014) 14(14):14, 1–26 Muryy, Fleming, & Welchman 21



analysis forms a basis for potential future studies both
in human and in machine stereo vision. Specifically:

(1) We introduced a rendering technique based on
virtual illumination mapping, which makes it
possible to manipulate stereo cues while keeping
monocular cues practically unchanged. The method
enables the experimenter to continuously interpo-
late the disparity field between mirrored and
painted versions of the stimulus (and indeed
beyond), allowing precise control of the conflict
between monocular and binocular cues. Here, we
used this technique to analyze the structure of
specular disparity fields.

(2) We formulated the solution of the stereo corre-
spondence with known geometry based on match-
ing reflected ray vectors, to establish the ground
truth disparities created by specular surfaces. This
analysis generalizes previous work that only con-
sidered the behavior of individual light sources.

(3) We formally described situations where solutions to
the correspondence problem for specular stereopsis
do not exist and when there can be multiple
matches. This provides crucial insights into when
and where human stereopsis should fail when
viewing images of mirrored surfaces, expressed in
geometrical terms.

(4) We demonstrated that it is possible to find matching
points between stereo images of a mirrored object
using a simple correlation-based method, as long as
the matches are not constrained to lie on the
epipolar lines, but rather within a 12 arcmin region
flanking those lines (consistent with human visual
limits fusion for vertical offsets). This demonstrates
that simple image-based matching yields disparity
fields similar to those predicted from the ground
truth structure of the virtual image created by the
reflective surface. It also models a simple mecha-
nism through which the human visual system could
access both epipolar and ortho-epipolar compo-
nents of the matches, which we argue are treated as
providing different information.

(5) We showed a relation between specular disparities
and surface topology/viewing geomentry. Thus,
specular disparities can be used to interpret some
second-order properties of the real physical surface.
Although we argue that the human visual system
does not exploit these relationships, they could be
used in artificial vision systems.

Previous work has suggested that the human visual
system may have internalized the physics of specular
reflection (Blake & Bülthoff, 1990, 1991), tacitly
implying that it might be able to reconstruct depth
from specular surfaces and use the precise locations of
reflections to determine surface material properties.
This may be true in some qualitative sense—for

example, when features lie on the surface in depth they
are seen as matte surface markings rather than as
highlights. However, we suggest that rather than
knowing the physics of specular reflection, many of the
limits and problems observers encounter when viewing
purely specular surfaces may in fact result from the
nature of the disparity signals themselves. In particular,
we suggest that the visual system treats the components
of the disparity vectors that lie along the epipolar lines
as indicators of depth (much as in standard stereopsis),
while the orthogonal components may be treated as an
intrinsic indicator of the reliability of the depth
estimate signal. This approach means that where image
regions are unmatchable, no depth estimate results,
whereas in locations where matches are epipolar, the
visual system treats the depth signals at face value,
leading to depth estimates that correspond to the
virtual image (i.e., the reflections), rather than the true
physical surface itself. In between these two extremes,
where features are still fusible, but contain substantial
ortho-epipolar components, the visual system may treat
the depth estimates as an untrustworthy best guess.
Future studies with surfaces that have both reflections
and texture should investigate how the ortho-epipolar
components modulate the combination of depth
estimates between the accurate and reliable signals
from the surface texture with the inaccurate and
unreliable signals from the reflections. Our analysis
predicts that the depths seen should vary as a function
of the specific geometry of the surface and view
positions, because these determine the extent of the
ortho-epipolar components, and therefore the weight
that should be attributed to the depth estimates from
the specular reflections.

Conclusions

In this paper we have described the process by which
images of specularly reflective objects are produced in
order to highlight the ways in which specular stereo,
differs from the more widely considered matte/textured
case. This treatment allows us to make some observa-
tions with relevance to artificial matching systems, as
well as identify the challenges such images pose to the
human visual system. To summarize, the key charac-
teristics of specular stereo we identify are:

(1) A given feature in one eye may have zero, one, or
multiple potential matches in the other eye,
depending on the surface and viewing geometry. Da
Vinci-like unmatchable features routinely occur not
just at occlusions, but also at points of inflection on
the surface. Surface concavity yields multiple global
matches, although constraints on the size of
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disparities and their gradients can be used to rule
out many of these.

(2) Matches can deviate substantially from the epipolar
line, leading to large ortho-epipolar components to
the disparity signals. To find matches it is typically
necessary to broaden search to a region surrounding
the epipolar line. These ortho-epipolar components
tend towards zero when the eigenvectors of the
Hessian matrix of surface depths (roughly speaking,
the principle curvature directions) are parallel to or
orthogonal to the interocular axis.

(3) Corresponding points generally do not yield
intersecting rays, so even when correspondence is
found, deriving depth estimates from the matches is
nontrivial. We suggested the visual system may
treat the epipolar component of the disparity signal
as a depth estimate and the ortho-epipolar compo-
nent as an indicator of the intrinsic reliability of the
depth estimate.

(4) Based on these assumptions, the depth values
inferred from specular disparity fields trace out
virtual surfaces that fall some distance away from
the surface in depth. These virtual surfaces can have
qualitatively different structure from the surface
that generated them (e.g., convex physical surfaces
can yield virtual surfaces with concavities). The
virtual surfaces are highly sensitive to view and
surface geometry. Smooth physical surfaces can
yield virtual surfaces that are discontinuous (piece-
wise smooth),

(5) The depth relationships between the physical surface
and its virtual surface are strongly influenced by the
physical surface’s second-order properties. Depth
behaves qualitatively like a tangent function of
surface curvature, undergoing a sudden jump—from
very far in front to very far behind the surface—as
surface curvature transitions from concave via
planar to convex. This causes large virtual depth
discontinuities around surface inflections.

Together, these properties make specular surfaces
highly challenging for vision systems. Our experimental
work on human perception of shape and material
properties from binocular cues suggests that the visual
system has not internalized the specific quantitative
relationships between specular reflections and the
physical surface that generated them. However, the
substantial and systematic deviations from typical
behavior means that specular reflections should often
be relatively easy to identify and exclude where the goal
is to estimate true surface depths from stereo signals. In
these conditions, interpolation processes are likely to
play a key role.

Keywords: stereopsis, matching, correspondence
problem, binocular vision, specularity, material percep-
tion
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Footnotes

1 Our analysis and observations are based on
rendering for an ideal mirror (excluding interreflec-
tion). While this is a simplification, the specular and
diffuse components of a partially specular (glossy)
surface can to a first approximation be treated
independently, yielding two distinct disparity fields.

2 It is near, rather than exactly at, surface inflection
points because the image creation process depends on
the combination of surface and viewing geometry.

3 Recall that for ideal mirrors, reflections are the only
visible features.
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Appendix

For the analysis in the paper we made the
simplifying assumption that illumination is infinitely
far from the object. In reality, however, the distance of
a point in the environment to the surface of the
specular object is finite, and therefore the locations
mapped out by specular reflections depend on this
distance. This is most obvious for flat mirrors where the
depth of an object behind a mirror is as far as the real
object is in front. Thus, it is important to evaluate the
effects of distance on the calculation of the virtual
surface.

To test the importance of the assumption of
illumination at infinity and its compatibility with the
main conclusions of our paper, we conducted an
analysis of the effects of illumination distance on
calculated depths. We did this by calculating depth
locations of reflections for a simple near-spherical
reflective object while using spherical illumination maps
of different, finite radii. Figure 14 shows variation of
virtual depth as we change distance to the illumination.
Notice that the offset in depth with respect to changing
illumination distance is more pronounced for regions of
low curvature, while highly curved patches are hardly
affected by it. The orange solid line (baseline) shows the
virtual depth profile for illumination at infinity; the
blue dotted lines indicate virtual profiles for illumina-
tions of different radii, and the bar chart shows mean
displacement of the virtual surface from the baseline
values calculated for infinitely far illuminations. It is
apparent from Figure 14 that the exact depth of the
virtual surface depends on the distance from the
reflected environment to the surface of the object.
However, if the environment is further than 0.5 m, this
difference is negligibly small.
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Figure 14. Exploring the ‘‘illumination at infinity’’ assumption. Our analysis in the paper is based on assuming that the environment

illuminating the considered objects is infinitely far away. Here we consider different radii of illumination to test the reasonableness of

that assumption. (A) Schematic of the viewing geometry and illumination distances. (B) Virtual surfaces produced by illumination

spheres of different radii. The solid orange line shows the profile obtained for illumination at infinity. The virtual surface changes

systematically as the illumination gets closer to the object (dotted blue lines). We quantify the difference between the mean depth of

the virtual surface at infinity and the other illumination distances (bar graph on right). Beyond a distance of 30 cm, the difference

become from illumination at infinity becomes very small. (C) Virtual surfaces for a sinusoidal surface that contains both convexities

and concavities. In this case, the difference from illumination at infinity is even smaller than in (B). Figure adapted with permission

from Muryy et al. (2013).
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