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The recognition of complex body movements and actions is a fundamental visual capacity very important for social
communication. It seems possible that movement recognition is based on a general capability of the visual system to learn
complex visual motion patterns. Alternatively, this visual function might exploit specialized mechanisms for the analysis of
biologically relevant movements, for example, of humans or animals. To investigate this question, we trained human observers
to discriminate novel motion patterns that were generated, exploiting a new technique for stimulus generation by motion
morphing. We tested the learning of different classes of novel movement stimuli. One group of stimuli was fully consistent with
human movements. A second class of stimuli was based on artificial skeleton models that were inconsistent with human and
animal bodies. A third group of stimuli specified the same local motion information as human movements but was inconsistent
with an underlying articulated shape. Participants learned both classes of articulated movements very fast in an orientation-
dependent manner. Learning speed and accuracy were strikingly similar and independent of the similarity of the stimuli with
biologically relevant body shapes. For the class of stimuli without underlying articulated shape, however, we did not observe
significant improvements of the discrimination performance after training. Our results indicate the existence of a fast visual
learning process for complex articulated movement patterns, which likely is relevant for biological motion perception. This
process seems to operate independently of the consistency of the patterns with biologically relevant body shapes but seems to
require the compatibility of the learned movements with a global underlying shape.
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Introduction

The ability to recognize complex movements and actions
is critical for the survival of many species. Consequently, the
human visual system is very skilled in the extraction of
information from movements, even for strongly impover-
ished stimuli like point-light displays (Johansson, 1973).
Neonates are able to imitate facial and manual gestures
(Meltzoff & Moore, 1977), suggesting that the recognition
of complex movements might, at least partially, depend on
innate mechanisms for the processing of biologically
important human movements (Fox & McDaniel, 1982).

However, motion recognition might also critically
depend on visual learning. A dependence on learning has
been demonstrated for a broad range of visual tasks ranging
from lower level vision tasks like orientation discrimina-

tion, hyperacuity, or direction discrimination (e.g., Ball &
Sekuler, 1987; Mayer, 1983; Poggio, Fahle, & Edelman,
1992) to higher level tasks such as face or object
recognition (see Fine & Jacobs, 2002; Goldstone, 1998;
Tarr & Bülthoff, 1998, for a review). Studies on object
recognition indicate that observers are able to learn novel
complex shapes, exploiting representations that show view
dependence (Edelman & Bülthoff, 1992). Moreover,
neurophysiological experiments in monkeys support the
existence of neurons in the inferotemporal cortex, which
learn to respond selectively to novel complex three-
dimensional shapes (Logothetis, Pauls, & Poggio, 1995).
Many of these neurons show view-dependent tuning.

The central role of learning in the visual recognition of
complex shapes motivates the hypothesis that the recog-
nition of complex movement patterns might also be based
on learning. Evidence supporting this hypothesis was
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provided by studies showing that human observers learn to
recognize individuals based on their facial or full-body
movements (e.g., Hill & Pollick, 2000; Kozlowski &
Cutting, 1977; O’Toole, Roark, & Abdi, 2002; Troje,
Westhoff, & Lavrov, 2005). Moreover, the detection of
point-light walkers in dynamic noise can be improved
through visual learning (Grossman, Blake, & Kim, 2004;
Hiris, Krebeck, Edmonds, & Stout, 2005). Furthermore,
the recognition of biological motion is dependent on
stimulus orientation, like the recognition of stationary
objects (Bertenthal, Proffitt, & Kramer, 1987; Pavlova &
Sokolov, 2000; Sumi, 1984). Consistent with these
psychophysical findings, biological-motion-sensitive neu-
rons in the superior temporal sulcus (STS) of monkeys
show view-dependent modulation of their firing rate
(Perrett et al., 1985), and imaging studies indicate reduced
fMRI activity in human STS for the presentation of
inverted point-light walkers (Grossman & Blake, 2001).
This suggests that complex movements and static shapes
might be encoded by similar orientation-dependent and,
potentially, view-dependent mechanisms (Verfaillie,
De Troy, & Van Rensbergen, 1994). That such learning
mechanisms provide a computationally powerful
explanation of biological motion recognition is suggested
by theoretical models that account for a variety of
experimental results (Giese, 2000; Giese & Poggio,
2003; Lee & Wong, 2004).

This study investigates the learning of complex motion
patterns that were either biologically relevant human-like
actions or artificial movements. Two classes of artificial
patterns were tested. One class of stimuli was articulated
movements based on skeleton models without biological
relevance. The other class of artificial stimuli had the same
local motion information as human motion but was
inconsistent with an underlying skeleton. Opposed to the
human-like stimuli, the artificial stimuli were not inter-
preted consistently as biological actions that are executed
by humans or animals.

As paradigm for the study of learning, we chose the
discrimination learning of motion patterns because this
allowed us a relatively accurate matching of the complexity
and the low-level properties of the different stimulus
classes. A control of the low-level properties was important
because we wanted to study the learning of global motion
patterns, rather than discrimination based on specific salient
local cues or features (like average or maximum speed of
individual dots). To generate stimuli with highly controlled
spatiotemporal similarity properties, we exploited motion
morphing and a new method for the approximation of
motion morphs by real human movements. Our experi-
ments tried in particular to address which properties of
complex motion stimuli are critical for fast learning and for
the generalization to similar stimuli.

We conducted four main experiments and two control
experiments. Experiment 1 shows that humans can learn
novel articulated movements very quickly. In addition, it
demonstrates that human-like and artificial articulated

movements are learned equally fast and accurately. The
similarity of the learning of these two stimulus classes was
confirmed by Experiment 2, which demonstrates that the
learned representation for both stimulus types is orienta-
tion dependent, like normal biological motion perception.
Experiment 3 rules out the possibility that the observed
similarity between human-like and artificial articulated
movement patterns is due to the fact that both
stimulus classes were generated by motion morphing.
Consistent with Experiment 1, we obtained striking
similarities between the learning of (nonmorphed) real
human movements and artificial patterns. Experiment 4
finally demonstrates that the presence of an underlying
skeleton seems crucial for fast learning and robust
generalization.

Methods

Participants

A total of 34 individuals (15 male, 19 female; mean age,
27.6 years) participated in the experiments (11 in
Experiment 1, 9 in Experiment 2, 7 in Experiment 3, and
7 in Experiment 4). All participants had normal or
corrected-to-normal vision. Many of them had participated
in psychophysical experiments before, but no one had ever
been exposed to the same or similar morphing stimuli.
Participants were tested individually, gave written
informed consent to participate in the study, and were
paid for participation.

Stimuli
Visual stimulus presentation

The stimuli were presented as point-light walkers
consisting of 10 dots. The dot trajectories were generated
by motion morphing (see below) between three prototype
trajectories (natural human or artificial movements). The
stimuli were displayed using an Apple Macintosh G4
computer and a Sony color monitor (75 Hz frame rate;
1,024 � 768 pixel resolution) that was viewed binocularly
from a distance of 40 cm. Stimulus presentation and
recording of the participants’ responses were accomplished
using the MATLAB Psychophysics Toolbox (Brainard,
1997). The stimuli were shown as black dots on a gray
background, and each dot had a diameter of 0.5 deg visual
angle (Figure 1).

To prevent participants from using low-level strategies
for accomplishing the task, the stimulus dots were not
presented on the major joints. Instead, for every frame, the
dot positions were chosen randomly and uniformly dis-
tributed along the bone segments that were immediately
adjacent to the relevant joint (cf. Beintema & Lappe, 2002,
for a similar stimulus manipulation). The maximum
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displacements were 30% of the bone length away from the
joints. This manipulation does not disrupt the perception
of biological motion. However, we have shown in
previous experiments that it efficiently prohibits the use
of local strategies, like comparing the relative positions of
individual dot pairs (Jastorff, Kourtzi, & Giese, 2003).
Also, it makes it very difficult to memorize dot config-
urations of individual frames. The size of the stimuli was
5 � 10 deg, and their position was randomized within an
area of T2 deg horizontally and vertically.

In each trial, we presented first a movement stimulus for
four gait cycles, followed by a 500-ms blank interval and
the second movement stimulus, which was also presented
for four cycles. Each gait cycle lasted for 1,300 ms,
resulting in a total duration of 10.9 s per trial.

Tracking of human movements

Prototypical human movement trajectories were obtained
by tracking the two-dimensional joint positions in videos
showing an actor performing different movements. The
actor moved along a line that was orthogonal to the view
direction of the camera (side view). All movements were
executed periodically for multiple cycles, but only a single
cycle of each movement was used for motion morphing.
First, the translation of the body center was subtracted by
fitting the translation of the hip with a linear function of
time. The resulting movement looks like a person perfor-
ming the movement on a treadmill. The body points that
were tracked manually were the head, shoulders, elbows,
wrists, hip, knees, and ankles. For the generation of the
point-light stimuli, the positions of the shoulder and the

head markers were averaged, resulting in a stimulus with 10
dots. The tracked trajectories were time-normalized and
smoothed by fitting them with a second-order Fourier
series. The resulting periodic trajectories served as proto-
types for the generation of human-like novel movements.
The prototypes of the human movements are listed in
Table 1. Some of the movements were right–left symmet-
ric, while others were asymmetric.

Generation of artificial articulated movements

Prototypical trajectories for the artificial stimuli were
generated by animation of multiple artificial skeleton
models with nine bone segments that were linked in the
same way as a human skeleton (Figure 1b). The shapes of
these skeletons were chosen to be highly dissimilar from
biologically relevant body structures. The trajectories of
the joint angles !n(t) of the eight joints of the skeletons
were given by sinusoidal functions of time:

!n tð Þ ¼ an þ bn sin 5t þ 7nð Þ:

The frequency, 5, and amplitudes, bn, were matched
with typical values of joint trajectories of human actors
during natural movements. In this way, low-level proper-
ties and the complexity of the human and artificial
prototype movements were coarsely balanced.

Motion morphing

Our stimuli were generated by motion morphing between
triples of prototypical trajectories. These triples were
chosen either from the human or from the artificial
articulated movements. Motion morphing algorithms inter-
polate between trajectories, resulting in new trajectories
that blend between the style properties of the prototypes
(e.g., Bruderlin & Williams, 1995; Wiley & Hahn, 1997).
Recently, such methods have been exploited to generate
stimuli for psychophysical experiments (Giese & Lappe,
2002; Troje, 2002). For our experiment, we applied a
method that creates new trajectories by linear combination
of three prototypical trajectories in space–time (Giese &
Poggio, 2000). It has been shown that this method results
in natural-looking morphs for interpolations between
different natural gaits and also interpolates between the

Group Prototype

1 Out-to-in crescent Front kick Rock n’ roll
kick kick

2 Forward jumping Skating Sirtaki step
jack

3 Front punch Knife hand Hooking
strike punch

4 Marching Limping Running

Table 1. Description of the movements that were linearly combined
for the generation of the human-like stimulus groups.

Figure 1. Human-like and artificial articulated stimuli. Snapshots
from the sequence of a human-like (a) and an artificial articulated
(b) point-light stimulus. The points were not displayed directly on
the joint but randomly shifted along the bones of the skeleton in
each frame of the animation (dashed lines not shown during the
experiment). Examples are also linked as auxiliary Movie 1 and
auxiliary Movie 2.
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perceived properties of such patterns (see Giese & Lappe,
2002, for details). Formally, the morphs were given by the
equation

New motion pattern ¼ c1 Prototype 1ð Þ
þ c2 Prototype 2ð Þ
þ c3 Prototype 3ð Þ

where the weights ci determine how much the individual
prototypes contribute to the morph. When the weight of a
prototype is high, the linear combination strongly resem-
bles this prototype. (Weight combinations always fulfilled
c1 + c2 + c3 = 1). The weight vectors (c1, c2, and c3) define
a metric space, and the distances between these vectors
provide a measure for the perceived spatiotemporal
similarity of the corresponding trajectories. This had been
verified in previous studies by analysis of perceptual
ratings for motion morphs and by applying multidimen-
sional scaling for the reconstruction of a perceptual
metrics from similarity judgments for pairs of such motion
morphs (Giese & Lappe, 2002; Giese, Thornton, &
Edelman, 2003). By varying the distance between the
weight vectors, we were able to control the difficulty of
the stimulus discrimination precisely.

Using this algorithm, we generated three different
stimulus groups for each type of movement (human-like
and artificial patterns). The first group, called Center
stimuli in the following, is characterized by equal weights
of all prototypes in the linear combination (c1 = c2 = c3).
The other two groups were characterized by nonequal
weights of the prototypes in the motion morph. For the
group of Test Off-Center stimuli, the weights for one
prototype only slightly exceeded the weights of the other

two (ci 9 cj = ck, with i, j, and k defining the three
prototypes). For the third group, called Training Off-
Center stimuli in the following, one prototype was
weighted significantly higher than the others (ci d cj = ck;
Figure 2). The weights for the Test Off-Center stimuli were
adjusted, based on a preceding pilot experiment ensuring
that average performance was about 60% correct discrim-
inations before training. The largest weight of the Training
Off-Center stimulus was then set to 1.25 times the largest
weight of the corresponding Test Off-Center stimulus
(maintaining c1 + c2 + c3 = 1).

We confirmed that the physical distances between the
trajectories of the Center and Test Off-Center stimuli for
human-like and artificial stimuli were comparable by
computing the mean Euclidean distance between the dot
trajectories (0.073 for human-like and scrambled human-
like stimuli and 0.085 for the artificial patterns). This makes
it unlikely that our results can be explained by simple, low-
level motion or spatial differences between the dot
trajectories.

Selection of the prototypes

The prototypes for each group of the human-like move-
ments were carefully chosen to guarantee that the resulting
morphs always looked in such a way that a human actor
could execute them. In a pilot experiment, we tested 21
human movements, presented as side views, to determine
triples of prototypes that resulted in smooth-looking
morphs. We collected naturalness ratings (scale: 1, unnatu-
ral; 5, natural) for each of the morphed stimuli, and only
the stimuli with the highest naturalness ratings (Levels 4
or 5) were selected for the generation of the human-like
motion morphs. This procedure led to the selection of four
triplets of human movements: one contains locomotion
patterns and the rest include boxing movements, aerobics
movements, and kicks (see Table 1). We verified that the
resulting morphs were consistently interpreted as human
movements by naive observers.

Twelve prototypical artificial movements were generated
and selected based on the requirement that the resulting
morphs did not contain any salient visual cues (e.g., large
accelerations and bizarre asymmetries). Similar to the
prototypes for natural human movements, these prototypes
were divided into four groups containing three prototypes.
The prototypes within the same group differed gradually
with respect to the length of the bones of the skeleton and
the joint angle trajectories. Prototypes in different groups
were more dissimilar with respect to these parameters. Two
of the groups contained mirror-symmetric prototypes, and
the other two groups contained asymmetric patterns.

In a pilot experiment, we verified that naive participants
were not able to provide consistent interpretations for any
of these artificial movements. Most common interpretations
were the following: peculiar animal movements (38% of
observers), dynamic mechanical devices (21% of observ-
ers), and articulated shapes without any particular global

Figure 2. Pattern space defined by motion morphing. Morphs
were generated by linear combination of the joint trajectories of
three prototypical patterns (Prototypes 1 to 3). Three groups of
stimuli were generated by choosing different combinations of
linear weights: Center stimuli with equal weights of all three
prototypes, Test Off-Center stimuli with one prototype weighted
slightly higher than the others, and Training Off-Center stimuli for
which the weight of one prototype significantly exceeded the
equal weights of the other two.
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interpretation (35% of observers). Examples of the different
stimuli are provided in Figure 1 and as Auxiliary Movies 1
(human like) and 2 (artificial articulated).

Procedure

For each observer, two human-like stimulus groups and
two artificial stimulus groups were chosen randomly out of
the four groups of each type. The experiment started with a
brief practice session of four trials, showing four example
stimuli without feedback (two human-like and two artificial
stimuli).

In all trials, participants had to compare two movement
stimuli in a pair comparison paradigm. Each trial started
with the presentation of a Center stimulus followed either
by the same Center stimulus or by an Off-Center stimulus
from the same group that was randomly selected. Both
stimuli were presented for four gait cycles. The random
selection of the Off-Center stimulus reduced the presenta-
tion of the individual Off-Center stimuli, decreasing the
amount of spurious learning. In a two-alternative forced-
choice paradigm, participants had to report whether the
second stimulus matched the first one. They were instructed
to respond immediately after making their decision.
However, no explicit time constraint was imposed.

The experiment consisted of three test blocks that were
interleaved by two training blocks. In the test blocks,
Center stimuli had to be discriminated from Test Off-
Center stimuli (difficult discrimination, see Figure 2). Each
stimulus group was presented three times in random order,
resulting in 12 trials overall. During test trials, no
feedback about correct discrimination was provided. The
training blocks consisted of 32 trials (8 repetitions per
stimulus group). During training, participants had to
discriminate between Center and Training Off-Center
stimuli (simple discrimination, see Figure 2) and received
feedback about their performance. By testing the transfer
between Training Off-Center and Test Off-Center stimuli,
we were able to verify whether the learned representation
generalized to similar stimuli.

The results were analyzed using repeated measures
analyses of variance (ANOVAs), applying a Greenhouse–
Geisser correction for nonsphericity.

Results

Experiment 1: Learning of human-like versus
artificial articulated movements

The first experiment compared discrimination learning
between two types of articulated motion stimuli: move-
ments that closely resembled human movements (Movie 1)
and movements based on artificial skeleton models that
were quite dissimilar from biologically relevant move-

ments of humans or animals and were, thus, not
consistently perceived as such movements (Movie 2).
With this experiment, we tried to clarify two questions: (1)
Are humans able to learn the discrimination between
artificial articulated motion patterns without immediate
biological interpretation, and how fast is this learning? (2)
Is there a difference between the learning of biologically
relevant and artificial articulated movements?

Participants were trained with two types of point-light
stimuli: human-like stimuli, generated by morphing
between real human movements, and artificial articulated
movements, generated by morphing between trajectories
that were generated from artificial skeleton models (see
Methods section). If the human visual system contains
special mechanisms for the learning of biologically
important movements, one would expect that learning of
human-like patterns should be faster and potentially more
accurate than the learning of completely artificial patterns.
If, however, the visual system is disposing of a general
mechanism for the learning of articulated movements that
is independent of their biological importance, no differ-
ence would be expected.

Results and discussion

Participants perceived the human-like stimuli as human
movements, whereas the artificial articulated patterns
typically resulted in very inconsistent interpretations
between participants (e.g., Bmechanical device[ or Bweird
spider,[ see Methods section). Figure 3a shows the
discrimination performance (percentage correct) for the
human-like stimuli (dark gray) and the artificial articulated
patterns (light gray) for the three test blocks. Starting close
to chance level, participants show very similar improve-
ments of discrimination performance for both stimulus
types. Two training blocks with only 16 repetitions of
each Center stimulus were sufficient to improve perfor-
mance to a level above 80% correct responses for both
stimulus types. A two-way repeated measures ANOVA
reveals a significant main effect of the number of the test
block, F(2,20) = 9.2, p G .01. Neither the main effect of
stimulus type, F(1,10) G 1, p = .91, nor the interaction was
significant, F(2,20) G 1, p = .76. An additional ANOVA
tested the influence of the stimulus group (triple of
prototypes) within the human-like stimuli and within the
artificial stimuli. This analysis verified that the learning
effects did not depend significantly on the specific
stimulus group (nonsignificant interaction between stim-
ulus group and number of the test block). This result
verifies that the matching of task difficulty before training
between the stimulus groups was efficient.

Figure 3b shows the response times for the two stimulus
types. Consistent with the increase in performance, the
response times decrease after training for both stimulus
types in a very similar way. This observation was
confirmed by an ANOVA showing a significant main
effect of the number of test blocks, F(2,20) = 5.5, p G .05,
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but no significant influence of stimulus type, F(1,10) G 1,
p = .63, and no significant interaction, F(2,20) = 2.4,
p = .12.

These results indicate that the human visual system
disposes of a learning mechanism for articulated movement
patterns, which works equally well for biologically impor-
tant and artificial articulated patterns. Furthermore, less

than 20 stimulus repetitions during training were sufficient
for participants to increase their performance significantly.
This demonstrates relatively fast visual learning of such
articulated movement patterns. A similar number of
stimulus repetitions seems to be required for the learning
of the detection of novel point-light stimuli in noise (Hiris
et al., 2005).

Because the discrimination during the test blocks of our
experiments (discrimination between Center and Test Off-
Center stimuli) was more difficult than the discrimination
during the training blocks (discrimination between Center
and Training Off-Center stimuli, see Methods section),
successful learning of a simpler discrimination facilitated
the more difficult discrimination during the test blocks.
The same phenomenon has been reported in other
perceptual learning experiments (e.g., Ahissar & Hochstein,
1997; Liu & Weinshall, 2000; Mackintosh, 1974). In
addition, this result demonstrates that observers were able
to generalize from the learned representation to similar
novel movement stimuli.

To further investigate the properties of this general-
ization, we conducted two additional control experiments.
The first experiment tested the transfer of the learning to
novel untrained stimuli generated from different prototyp-
ical movements. For every participant, the four stimulus
groups of the human-like and the artificial patterns were
randomly divided into two sets. The first set was based on
two triples of prototypes of the human-like and the artificial
articulated movements. The second set contained the
remaining two triples of prototypes of each stimulus class.
The stimuli of the first set were presented throughout the
experiment (e.g., in the test blocks and the training blocks).
The second set was presented only during the test blocks
and served for the testing of generalization. If learning is
unspecific for the trained movements, one would expect
transfer to the novel stimuli of the second set, although they
were derived from different prototypes and thus represent a
different set of actions. If, however, learning is specific for
the trained movements and shows only generalization to
similar actions, transfer would be expected only within the
trained stimulus groups.

Figure 4 shows the results of this first control experi-
ment. We only observed improvements in performance for
the trained stimuli but not for the novel ones. This was
confirmed by a three-way ANOVA that revealed a
significant main effect of the number of the test block,
F(2,16) = 4.2, p G .05, and a marginally significant
interaction, F(2,16) = 3.5, p = .06, between the number of
test block and the familiarity (Trained vs. Novel stimuli).
An additional contrast analysis based on the marginally
significant interaction revealed significant improvements
for the trained groups, human-like: F(1,8) = 4.7, p G .05;
artificial articulated: F(1,8) = 21.4, p G .01, but not for the
untrained groups, human-like: F(1,8) G 1, p = .47; artificial
articulated: F(1,8) G 1, p = .98. This result implies that the
learning was specific for the trained motion patterns and
did not transfer to untrained patterns that were generated

Figure 3. Discrimination learning for human-like versus artificial
articulated movements. Panel a shows the mean percentages of
correct responses for Experiment 1 (TSEM) in the three test
blocks for the human-like stimuli (dark gray) and for artificial
articulated movements (light gray). Panel b shows the mean
reaction times (TSEM) in the three test blocks measured after the
presentation of the first stimulus separately for human-like and the
artificial articulated movements (n = 11).
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from different prototypical movements. This shows that the
selectivity of the learned representation is sufficient for
distinguishing different action categories, for example,
boxing and kicking. Moreover, this result rules out that our
results can be explained by general factors, like increasing
familiarity with the task or increasing efficiency of the
processing of biological motion.

The second control experiment tested the necessity of the
training blocks with feedback for the learning process. The

three test blocks were presented without intermediate
training. In this case, discrimination performance did not
increase significantly (no main effect of the number of the
test block), F(2,18) G 1, p = .91. Similar to Experiment 1,
we did not observe significant differences between human-
like and artificial articulated stimuli in this control
experiment: no main effect of stimulus type, F(1,9) G 1,
p = .93, and no significant interaction, F(2,18) G 1, p = .46.
This implies that training together with feedback seems to
be essential for the fast improvement during learning. In
addition, this experiment provides additional evidence
against the explanation of the observed changes by
unspecific familiarity or practice effects.

Experiment 2: Orientation dependence of the
learned representation

A characteristic property of the recognition of biological
motion is its strong orientation and view dependence.
Rotation of point-light walkers in the image plane against
the familiar upright orientation substantially degrades
recognition performance (Bertenthal et al., 1987; Pavlova
& Sokolov, 2000; Sumi, 1984). Likewise, it has been
shown that recognition of point-light walkers, as well as
the response of biological motion-selective neurons in
monkey cortex, is modulated by rotation of the stimuli
in depth (Bülthoff, Bülthoff, & Sinha, 1998; Oram &
Perrett, 1996).

Experiment 2 tested whether the learned representations
of novel human-like and artificial articulated patterns
show orientation dependence, like the recognition of
natural biological motion patterns. To test orientation
dependence, we modified Experiment 1 by training the
participants with stimuli that were rotated by 90 deg in the
image plane against the test stimuli, which were presented
upright.

Results and discussion

An analysis of the performance during the training blocks
shows that participants were able to learn the rotated stimuli
in the same way as the stimuli presented upright in
Experiment 1. Performance increased significantly from
the first to the second training block: main effect of
training block, F(1,8) = 9.8, p G .05, but there was no
significant difference between the stimulus classes,
F(1,8) G 1, p = .69, and no significant interaction,
F(1,8) G 1, p = .46.

In accordance with the orientation dependence of bio-
logical motion recognition, we did not obtain any signifi-
cant improvement of discrimination performance for both
stimulus types in the test blocks, when training stimuli were
rotated against the test stimuli (Figure 5). This was
confirmed by a repeated measures ANOVA showing no
significant influence of the number of the test block,
F(2,16) G 1, p = .44. In accordance with the results of

Figure 4. Control experiment testing generalization to novel stimuli
generated from different prototypes. The figure shows the mean
percentages of correct responses (TSEM) for the trained stimuli
(Panel a) and the novel stimuli (Panel b) in the three test blocks.
The human-like stimuli are presented in dark gray, and the
artificial articulated movements are presented in light gray.
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Experiment 1, there was no significant difference between
the two stimulus classes, F(1,8) G 1, p = .45, and no
significant interaction, F(2,16) G 1, p = .79.

This result implies that, similar to normal biological
motion patterns, the representations for the novel learned
patterns are strongly orientation dependent. The fact that
observers’ performance substantially improved during the
training blocks confirms that they were able to learn rotated
novel patterns but showed a lack of transfer to the normal
orientation. This result seems consistent with the hypoth-
esis that biological motion recognition is based on the
learning of orientation-dependent or, potentially, view-
dependent templates (Giese & Poggio, 2003; Verfaillie,
2000). This implies that biological motion recognition
might be based on similar principles as the recognition of
complex static shapes (see Tarr & Bülthoff, 1998, for
review).

Experiment 3: Comparison with real
human movements

All stimuli in Experiments 1 and 2 were generated by
motion morphing, that is, by interpolation between
prototypical trajectories. Theoretically, even when

Figure 5. Orientation dependence of the learned representation.
Mean percentages of correct responses (TSEM) for three test
blocks. Training stimuli were rotated against the test stimuli in the
image plane (by 90 deg). Recognition rates are shown for the
human-like movements (dark gray) and for the artificial articulated
movements (light gray; n = 9).

Figure 6. Setup for approximating human-like motion morphs by real human movements. A point-light walker, animated with the
trajectories generated by motion morphing, is superposed to an online video of the actor walking on a treadmill. The movements of the
actor, who tries to imitate the movements of the point<light walker, are motion<captured (using reflecting markers on shoulders, elbows,
wrists, knees and ankles, head and hip). The recorded trajectories closely approximate the trajectories of the human-like motion morph
but fulfill exactly the laws of motion of real human movements. Based on the processed trajectories, point-light stimuli with 10 dots were
generated by averaging the positions of the head and the shoulder markers as well as the hip markers. A movie showing a real human
sample stimulus can be obtained as Auxiliary Movie 3.
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generated from human trajectories, such interpolations
might violate specific properties of human movements that
may be critical for their perception. This fact might
account for the lack of a difference between human-like
and artificial motion morphs. To rule out this possible
confound, we conducted an additional control experiment
comparing artificial morphs with real human movements,
which exactly fulfill the human Blaws of motion.[

Our control experiment exploits the fact that the human-
like motion morphs are very similar to human movements,
in that they can be executed by a human actor. To create a
stimulus set that was very similar to Experiment 1, we
developed a method that approximates human-like motion
morphs by the movements of a real human actor,
exploiting the setup illustrated in Figure 6.

A human actor on a treadmill tried to imitate human-like
motion morphs. The actor viewed a superposition of an
online video of his own movement and a point-light
stimulus, whose movements were defined by the motion
morph. The actor tried to align the joints of his body, as
accurately as possible, with the positions of the dots of the
point-light walker, monitoring himself on the video screen.
After several minutes of training, the actor was able to
accomplish a relatively accurate reproduction of the move-
ments of the point-light walker (reproducing 88% of the
variance of the two-dimensional joint trajectories).

The movements of the actor were recorded using a
VICON 612 motion capture system with six cameras. The
three-dimensional positions of 22 reflecting markers were
recorded with a sampling frequency of 120 Hz and a spatial
accuracy below 1 mm. The resulting trajectories were
processed using commercial software by VICON. From

each movement, several movement cycles were recorded,
and the cycle that was most similar (after projection on the
two-dimensional plane) to the imitated point-light stimulus
was selected for stimulus generation. Based on the
processed marker trajectories, point-light stimuli with 10
dots were generated and presented with the same frame rate
as the original stimuli.

Results and discussion

The design of Experiment 3 was identical to that of
Experiment 1. However, we compared the learning of
three stimulus classes: artificial articulated movements
(Movie 2), human-like morphs (Movie 1), and real human
movements (Movie 3).

The results of this experiment are summarized in
Figure 7. Based on a different set of participants, this
experiment replicates the results of Experiment 1. For the
analysis of differences between the different stimulus
types, we applied a signal detection analysis and com-
puted d ¶ values. In accordance with the improvement in
performance in Experiment 1, we found a marginally
significant increase of d ¶ values with the number of test
blocks, F(2,12) = 3.8, p = .07, whereas there was no
significant influence of the stimulus type, F(2,12) G 1, p =
.47, and no significant interaction, F(4,24) G 1, p = .67. To
verify the marginally significant effect of the training, we
conducted a separate analysis also for the percentage of
correct responses, similar to what we did in Experiments 1
and 2. For this analysis, we found a significant main effect
of the number of the test block, F(2,12) = 7.1, p G .05,
supporting the improvement due to training, but there
was no significant influence of the stimulus type,
F(2,12) G 1, p = .65, and no significant interaction,
F(4,24) G 1, p = .79.

These results rule out the possibility that the similarities
between the learning of human-like and artificial articu-
lated patterns obtained in Experiment 1 are only caused by
the fact that all stimuli were generated by motion
morphing. The same similarity is found between real
human movements and artificial articulated patterns.

Experiment 4: Learning of stimuli with and
without global underlying shape

Experiments 1, 2, and 3 have demonstrated strong
similarities for the learning of human-like and artificial
articulated movement patterns. This raises the question if
all movement patterns of comparable complexity can be
learned, even if they do not support the perception of a
global underlying shape or skeleton. To test this question,
we compared the learning of human-like movements
(Movie 1) with the learning of movement patterns without
an underlying skeleton but with identical local motion
information (Movie 4). In this way, we tested whether an
underlying skeleton facilitates discrimination learning and
generalization. Such facilitation would be specifically

Figure 7. Real human movements compared with artificial move-
ments. Shown are the d ¶ values for the human-like stimuli (dark
gray), the artificial articulated stimuli (light gray), and real human
movements approximating human-like morphs (white) for the
three test blocks (TSEM; n = 7).
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expected if the learning of motion patterns is dependent on
shape models or on a hierarchical grouping of local
movements (e.g., Johansson, 1986; Restle, 1979).

To generate stimuli that are not compatible with an
underlying skeleton, we spatially scrambled the human-like
movement patterns; that is, we added temporally constant
random position offsets to the individual dot positions. This
operation destroys the consistency of the movements with
an underlying articulated shape. However, because the
offsets are temporally constant, it does not affect the
local motion information of the stimuli. The offsets
were constrained to ensure that the scrambled stimuli
covered the same spatial area as the original human-like
stimuli. None of the tested participants were able to
recognize an articulated shape in any of these scrambled
stimuli.

The experimental design of this experiment was identical
to that of Experiment 1. For each participant, two human-
like morphs were randomly chosen and presented intact,
while the remaining two human-like morphs were pre-
sented as scrambled stimuli.

Results and discussion

The results of Experiment 4 from the three test blocks
are presented in Figure 8. In this case, the learning process
seems to be different for the two stimulus classes.
Although the initial d ¶ values for both stimulus types are
close to 0, only the performance for the natural-looking
morphs is increasing significantly (like in the previous
experiments). The performance for the scrambled stimuli

in the test blocks did not increase after the training. This
observation was confirmed by a repeated measures
ANOVA with the factors stimulus type and number of
the test block. We obtained a significant main effect of
stimulus type, F(1,6) = 11.1, p G .05, and of the number of
the test block, F(2,12) = 8.3, p G .01. The interaction was
marginally significant, F(2,12) = 3.8, p = .08. A separate
analysis of the correct responses in percentage correct
supported these results. We found a significant main effect
of the number of the test block, F(2,12) = 8.5, p G .01, and
a significant interaction, F(2,12) = 7.5, p G .05, whereas
the main effect of stimulus type was not significant,
F(1,6) G 1, p = .89.

Interestingly, a separate analysis of the training blocks
suggests no differences in performance during training
between the intact and the scrambled stimuli. A repeated
measures ANOVA reveals a significant improvement from
the first training block to the second training block, F(1,6) =
10.9, p G .05, for both stimulus types, but there was no
significant effect of stimulus type, F(1,6) G 1, p = .41, and
no significant interaction, F(1,6) G 1, p = .78. This result
suggests that participants learned to discriminate between
the scrambled training stimuli. However, they were not
able to generalize to test stimuli with smaller distances
between Center and Off-Center stimuli in morphing space.

An additional analysis of the response times shows that
the observed difference between intact and scrambled
movements in the test blocks cannot be attributed to a
speed–accuracy trade-off. Comparing the response times
between the two stimulus types (in the test blocks), we
found no significant differences, F(1,6) G 1, p = .72. This
clearly indicates that participants were trying to succeed
for both stimulus types.

Experiments 1, 2, and 3 demonstrated relatively fast
discrimination learning for articulated movements, that is,
movements with an underlying skeleton. Experiment 4
suggests that compatibility with a skeleton is critical for
this fast learning or at least for the generalization to more
difficult discriminations of similar stimuli. Yet, we cannot
exclude that stimuli without underlying skeletons are
learned with longer training times, for example, exploiting
specific local feature combinations.

Discussion

Our study investigated the visual learning of complex
movement patterns that shared specific properties with
natural human movements. We studied discrimination
learning for stimulus pairs that were generated by motion
morphing, allowing for a precise control of the spatiotem-
poral similarities between the stimuli and their low-level
properties. Our experiments show that humans can learn to
discriminate between novel articulated movement patterns

Figure 8. Human-like movement stimuli compared with scrambled
human-like stimuli. Shown are the d ¶ values for the intact human-
like stimuli (dark gray) and the scrambled stimuli (light gray) in the
individual test blocks (TSEM; n = 7).
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very quickly, after less than 20 stimulus repetitions. This
repetition number is consistent with the learning speed in a
recent study on learning of the detection of point-light
patterns in noise (Hiris et al., 2005). In addition, the
learned representation generalized to similar motion
patterns, enabling participants to accomplish more difficult
discriminations after the training. Similar to normal
biological motion, the learned visual representation seems
to be strongly orientation dependent; that is, discrimina-
tion performance after training increased only when the
test patterns were presented with the same orientation as
the training patterns.

Interestingly, learning speed and accuracy for human
movements and completely artificial articulated patterns
were quite similar. Familiarity or biological relevance of
the underlying kinematics or skeleton seems thus not to
be critical for the visual learning process. Contrasting with
this result, motion stimuli without underlying skeleton
could not be learned equally fast, even when their local
motion properties were identical to human-like move-
ments. This suggests that the Bbinding[ or grouping of the
individual stimulus elements into a global percept might
strongly facilitate the learning. The similarity of our stimuli
with normal biological motion stimuli and the fact that the
learning was orientation dependent make it possible that the
investigated learning process is also relevant for normal
biological motion recognition.

The observed strong similarity between learning of
human-like and artificial articulated movements was
highly reproducible. This similarity was observed in
Experiments 1, 2, and 3 and in the two additional control
experiments (46 participants and 8 different movement
stimuli in total). In addition, we found reproducible
improvements of performance with training and highly
selective differences between trained and untrained
stimuli. These observations, and the fact that we obtained
a difference between the learning of normal and
scrambled human stimuli, rule out the possibility that
the observed similarity between the two classes of
articulated stimuli just reflects a lack of sensitivity of
our paradigm or behavioral measures.

Our study provides some insights that contribute to the
question of what is Bspecial[ about biological motion
perception or at least for the visual learning of such stimuli.
Biological movements are characterized by several proper-
ties that might be critical for their perception: (1) general
smoothness properties of the trajectories, (2) the consis-
tency with an underlying global shape or skeleton, and (3)
the familiarity or biological relevance of these shapes and
the associated motion patterns. Our experiments show that
the last property is not critical for fast learning of complex
movements. However, the second property seems to be
critical.

By construction, all our stimuli shared the first property,
similar smoothness of the trajectories. Smoothness is
closely related to the consistency of the movements with
laws of motion that are typical for biological motor

behavior (Viviani & Flash, 1995). An example is the
Btwo-thirds power law[ (Lacquaniti, Terzuolo, & Viviani,
1983), signifying that curvature and speed of planar
human movements are linked by a power law. Psycho-
physical experiments have shown that simple motion
stimuli fulfilling this law appear smoother (Viviani &
Stucchi, 1992). The joint trajectories used for the
generation of our stimuli were in agreement with this
motor invariant. (The exponents of the power law were
determined by linear regression, applied to the logarithms
of velocities and curvatures, yielding exponents ranging
between .31 and .36 for human-like and artificial articu-
lated movements). It remains to be clarified in future
experiments whether a violation of general smoothness
properties impairs fast visual learning. Well-controlled
experiments of this type might be very difficult to realize
because it would have to be excluded that differences
between stimuli with different smoothness are not just
reflecting differences in low-level motion processing,
induced by the different motion energy distributions of
such stimuli.

There are several possible explanations why learning of
human-like and artificial articulated patterns is similar,
whereas learning of scrambled patterns is much more
difficult. First, there might be a mechanism that recognizes
complex movements by matching the underlying articu-
lated shape (e.g., Beintema & Lappe, 2002; Giese, 2000;
Giese & Poggio, 2003; Marr & Vaina, 1982; Vaina &
Bennour, 1985; Webb & Aggarwal, 1982). This mecha-
nism might operate independently of the biological
relevance of such shapes. Second, the recognition of
motion patterns might be based on features of intermediate
complexity, which only arise for motion that is derived
from smoothly deforming or articulated shapes. Third,
there could be top–down influences of shape recognition
that facilitate the learning of motion patterns. The
existence of top–down influences is suggested by a
number of psychophysical and imaging studies showing
that local motion perception and the activity in motion-
related brain areas are modulated by the recognition of
shapes, in particular when they are typically associated
with body movements (e.g., Chatterjee, Freyd, & Shiffrar,
1996; Kourtzi & Kanwisher, 2000; Peuskens, Vanrie,
Verfaillie, & Orban, 2005; Senior et al. 2000).

The importance of top–down mechanisms seems also
consistent with our observation that more difficult discrim-
inations between articulated movements were facilitated by
previously learned simpler discriminations of similar
patterns. The same phenomenon has been observed in other
visual learning experiments (e.g., Liu & Weinshall, 2000;
Mackintosh, 1974) and has also been termed perceptual
BEureka[ (Ahissar & Hochstein, 1997). It has been
explained by the learning of a more effective allocation
of attention to features or stimulus dimensions that are
relevant for the discrimination. Several psychophysical
studies suggest the existence of top–down influences in
biological motion perception (Cavanagh, Labianca, &
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Thornton, 2001; Thornton, Rensink, & Shiffrar, 2002).
The results of our experiments suggest that an underlying
global shape and, potentially, form recognition might
facilitate such top–down processes.

Another implication of our study is that consistency
with a preexisting internal (dynamic) body model seems
not to be required for fast visual learning of complex
movements. Such internal models likely contribute to the
perception of imitable body movements (e.g., Fadiga,
Fogassi, Pavesi, & Rizzolatti, 1995; Grafton, Fadiga,
Arbib, & Rizzolatti, 1997; Prinz, 1997; Wilson &
Knoblich, 2005; Wolpert, Doya, & Kawato, 2003). Recent
imaging experiments suggest that neural structures that
are involved in the representation of such internal models
are also activated by point-light walkers (Saygin, Wilson,
Hagler, Bates, & Sereno, 2004). However, we think that it
is unlikely that the learning of the artificial articulated
patterns was based on such internal body models because
their kinematics differed strongly from human bodies and
specified nonimitable movements. The contribution of
internal models to the recognition of artificial stimuli
could potentially be clarified in brain imaging studies that
compare activity distributions for the two articulated
stimulus types.

Several studies have suggested that infants have an
innate preference for the processing of biological motion
(Fox & McDaniel, 1982; Grezes et al., 2001; Johansson,
von Hofsten, & Jansson, 1980; Meltzoff & Moore, 1977;
Pavlova, Staudt, Sokolov, Birbaumer, & Krageloh-Mann,
2003). A preference for biological motion stimuli has also
been observed in animals (e.g., Blake, 1993). For
example, inexperienced newly hatched chicks demon-
strate an innate predisposition to approach motion stimuli
that share specific low-level properties with biological
movements (Vallortigara, Regolin, & Marconato, 2005).
However, this preference seems not to be selective for the
global stimulus structure because the animals were
equally attracted by scrambled and intact point-light
displays of hens. Also, this innate preference seemed not
to be selective for movements of different species, for
example, own species versus predators. Yet, an innate
predisposition to attend to stimuli with low-level proper-
ties that are typical for biological movements might be
very helpful to support the learning of more subtle
biologically important differences between complex
motion stimuli. Our results complement these studies
about potential unspecific innate factors by providing a
detailed investigation of stimulus properties that seem to
be critical for the learning of detailed distinctions between
complex movement patterns.

Summarizing, we have demonstrated the existence of a
fast visual learning process for the holistic structure of
complex motion patterns. This process shares important
properties with normal biological motion perception and
seems not to differentiate between biologically relevant and
nonbiological articulated movements, as long as they
convey the percept of a global form. Learning might thus

play an important role for understanding the perception of
biological motion and actions.
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