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Abstract

Perceived roughness is associated with a variety of physical factors and multiple peripheral afferent types. The current study
investigated whether this complexity of the mapping between physical and perceptual space is reflected at the cortical level. In
an integrative psychophysical and imaging approach, we used dot pattern stimuli for which previous studies reported a simple
linear relationship of interdot spacing and perceived spatial density and a more complex function of perceived roughness. Thus,
by using both a roughness and a spatial estimation task, the physical and perceived stimulus characteristics could be
dissociated, with the spatial density task controlling for the processing of low-level sensory aspects. Multivoxel pattern analysis
was used to investigate which brain regions hold information indicative of the level of the perceived texture characteristics.
While information about differences in perceived roughness was primarily available in higher-order cortices, that is, the
operculo-insular cortex and a ventral visual cortex region, information about perceived spatial density could already be derived
from early somatosensory and visual regions. This result indicates that cortical processing reflects the different complexities of
the evaluated haptic texture dimensions. Furthermore, this study is to our knowledge the first to show a contribution of the
visual cortex to tactile roughness perception.
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Introduction

The way we interact with objects in our environment is partly de-
termined by material properties such as texture. Texture is a
multidimensional construct and can be described by several per-
ceptual attributes such as rough, dense, soft, slippery, and thick
(Lederman et al. 1986; Hollins et al. 1993, 2000; Picard et al. 2003;
Gescheider et al. 2005; Bergmann Tiest and Kappers 2006).

For roughness, the mapping between physical and perceptual
space has extensively been studied. Physical roughness can be
described as being associated with several physical stimulus
properties, including height differences, spatial properties of
the texture (e.g., the spacing between single texture elements),
and friction (Bergmann Tiest 2010). The effect of these factors
on perceived surface roughness has been investigated and con-
firmed in numerous studies (Lederman and Taylor 1972; Blake
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et al. 1997; Bergmann Tiest and Kappers 2007), in particular for
coarse textures like gratings and dot pattern textures (Connor
et al. 1990; Meftah et al. 2000; Merabet et al. 2004; Gescheider
et al. 2005; Lawrence et al. 2007; Dépeault et al. 2009). Hence,
roughness perception is very likely influenced by a combination
of different physical factors.

The complexity of the mapping of the physical stimulus space
to perceptual space also appears to be reflected in the neural cod-
ing in the periphery. Roughness perception was recently shown
to be mediated by multiple mechanoafferents, that is, the rapidly
adapting (RA) and Pacinian (PC) afferents as well as the slowly
adapting type I cutaneous afferents (SA1) (Weber et al. 2013). Al-
though the spatial code conveyed by SA1 appears to be dominant
for coarse textures, such as dot pattern textures, the combined
use of SA1 spatial variation as well as RA and PC temporal vari-
ation result in an improved prediction for perceived roughness
(Weber et al. 2013). Hence again, roughness can only be repre-
sented using a combination of different afferent channels.

The outstanding question is whether and how the complexity
of the mapping of the physical stimulus space to perceptual
space affects cortical processing. What is the contribution of dif-
ferent cortical regions to the perception of different texture di-
mensions, and what kind of perceptual representation do they
contain?

Most previous studies on haptic texture processing do not
allow inferences regarding this question, because they do not dis-
sociate the physical stimulus characteristics from the perceived
texture dimensions. They do, however, provide important in-
sights in the cortical network involved in haptic texture percep-
tion in general. Next to activation clusters in the postcentral
gyrus (PoCG)—presumably the primary somatosensory cortex
(S1; Deshpande et al. 2008; Stilla and Sathian 2008; Sathian
et al. 2011)—studies on haptic texture perception also reported
consistent texture-selective activations in the parietal opercu-
lum and the insula. The latter activations comprised 3 of the 4
distinct cytoarchitectonic fields described on the human parietal
operculum (Eickhoff, Amunts, et al. 2006; Eickhoff et al. 2007),
namely the somatosensory OP1, OP4, and in particular OP3 (Stilla
and Sathian 2008; Sathian et al. 2011). A recent study reported
haptic texture-evoked activation in the collateral sulcus (CoS),
close to a location showing activation in response to visual tex-
ture perception (Podrebarac et al. 2014). Similar texture-selective
responses in the visual cortex, although located more posterior in
the occipital cortex, were reported by Stilla and Sathian (2008)
and Sathian et al. (2011) in response to both haptic and visual
stimuli. Interestingly, 2 studies on the representation of material
properties indicated that low-level image properties are repre-
sented in early visual cortex, whereas higher visual regions in
the temporal cortex construct information about the perceptual
visuo-tactile material properties (Hiramatsu et al. 2011; Goda
et al. 2014).

Some studies specifically focused on roughness, and found
that discrimination of this tactile texture dimension appears to
systematically involve the parietal operculum when compared
with macrospatial tasks such as length and shape discrimination
(O’Sullivan et al. 1994; Ledberg et al. 1995; Roland et al. 1998).
These results were confirmed by experiments focusing on varia-
tions in surface roughness: graded blood oxygen level-dependent
(BOLD) effects were observed in the parietal operculum and the
insula (Kitada et al. 2005; Simoes-Franklin et al. 2011), but not
in the S1.

Thus, taken together, the neuroimaging literature points to an
involvement of the operculo-insular cortex in roughness estima-
tion. Furthermore, based on the research on general texture
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processing (Sathian et al. 2011; Podrebarac et al. 2014) and percep-
tual material properties (Hiramatsu et al. 2011; Goda et al. 2014),
an additional contribution of ventral temporal regions in rough-
ness perception is possible. This contribution may have been
missed by neuroimaging studies on roughness perception due
to the limited sensitivity of the employed conventional univari-
ate analysis methods. This part of the cortex was indicated in
the processing of visual as well as non-visual perceptual material
properties (e.g., smooth-rough) (Hiramatsu et al. 2011) and might
be involved in haptic roughness perception via learned associa-
tions between visual and haptic texture properties as discussed
by Podrebarac et al. (2014).

None of the haptic studies mentioned above allow inferences
on the differential involvement of cortical regions in the process-
ing of physical texture characteristics and their perceptual re-
presentation, as either multiple physical stimulus properties
were varied at the same time or the mapping between physical
and perceptual attributes was not taken into account. One par-
ticular stimulus set that allows us to dissociate the physical
and perceptual stimulus space is a specially designed set of em-
bossed dot patterns evoking different psychometric curves for 2
perceived texture dimensions, namely roughness and spatial
density. This artificial stimulus set has been employed in several
studies showing that perceived spatial density linearly decreases
with increasing interdot spacing of the dot patterns (Merabet
et al. 2004), whereas perceived roughness follows an inverted
U-shape peaking at about 3 mm interdot distance (Connor et al.
1990; Merabet et al. 2004; Gescheider et al. 2005; Eck, Kaas,
Mulders, et al. 2013; Gescheider and Wright 2013). Hence, per-
ceived spatial density and perceived roughness of this stimulus
set are both influenced by the number of texture elements, but
only the former one can linearly be mapped to the physical
stimulus space. This difference in complexity is also reflected
at the afferent level, where the perception of spatial texture prop-
erties has been associated with the spatial code of slowly adapt-
ing type I cutaneous afferents (SA1; Johnson 2001), whereas
roughness perception was influenced by a combination of differ-
ent afferent channels. Taken together, these properties make this
stimulus set ideal to investigate the cortical areas supporting the
processing of the complex perceptual texture dimension rough-
ness controlling for the processing of low-level sensory aspects
by adding a spatial density judgment task.

Studies comparing the neural substrates of roughness and
spatial density perception show inconclusive results. One of the
few studies using the specific dot pattern stimulus set described
above found that repetitive transcranial magnetic stimulation
(rTMS) to the somatosensory cortex impaired roughness judg-
ments, whereas judgments of spatial density were only altered
after rTMS to the occipital cortex (Merabet et al. 2004). This
could be interpreted as evidence that the percept of roughness
is crucially dependent on somatosensory regions, whereas dens-
ity and distance judgments mainly rely on the occipital cortex.
However, this interpretation has found limited support up to
now. As described above, roughness perception has been asso-
ciated with the parietal operculum and insula (Kitada et al.
2005; Simoes-Franklin et al. 2011). Moreover, an fMRI study
using the same dot pattern stimuli and a similar design surpris-
ingly found no regions with increased activations for a roughness
estimation task, and indicated an involvement of early somato-
sensory and posterior parietal regions in tactile density estima-
tion (Merabet et al. 2007). Also, a prior study by another group
found that TMS targeting the somatosensory cortex had a disrup-
tive effect on spacing discriminations as well (Zangaladze et al.
1999). Finally, our group found clear parametric effects of
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stimulus spacing on the BOLD response in both early occipital
and somatosensory regions (Eck, Kaas, Goebel, et al. 2013). Hence,
there is evidence that, apart from the occipital cortex, density esti-
mation might also involve the primary somatosensory areas. How-
ever, the contribution of each region is confounded by differences
in the employed stimulus set and the task instructions [e.g., dot pat-
terns and spacing estimation (Merabet et al. 2004) vs. linear gratings
and discrimination (Zangaladze et al. 1999)].

Therefore, we set out to verify the differential contribution of
the regions that were found to be involved in roughness and
density estimation in a single fMRI experiment using the same
stimuli for each task. We hypothesized that the cortical networks
underlying density and roughness perception might specifically
reflect the above-described differences in the complexity of
both texture dimensions, thatis, the mapping between the phys-
ical and perceptual space. To test this hypothesis, the current
study used an integrative psychophysical and imaging approach,
directly comparing a roughness estimation task with a spatial
density estimation task of dot patterns varying in the mean cen-
ter-to-center dot spacing, covering the full range of the psycho-
metric curves. Our first aim was to characterize the cortical
networks underlying density and roughness estimation, that is,
haptic texture perception. Second, we aimed to investigate in
which of these previously implicated brain regions, cortical acti-
vation varies with different levels of perceived texture character-
istics, that is, perceived roughness and density. Since multivoxel
pattern analysis (MVPA) is considered more sensitive than uni-
variate data analysis methods to detect information in brain re-
gions, we employed the former to reveal possible subtle
differences in distributed activation patterns depending on the
task context. Our third aim was to investigate to what extent
similar effects can be observed for objective stimulus character-
istics when subjects only focus on the stimulus exploration with-
out a concurrent rating task. Hence, is enhanced attention to the
stimulus characteristics a crucial factor, as indicated by Kitada
et al. (2005)?

We expected spacing-related changes to be primarily re-
flected in early sensory regions, that is, the PoCG and the poster-
ior occipital cortex, but roughness-related activation changes in
higher-order cortical regions, that is, the insula and the parietal
operculum, as observed in previous studies of roughness estima-
tion by Zangaladze et al. (1999); Merabet et al. (2004); Kitada et al.
(2005); Simoes-Franklin et al. (2011) and possibly an involvement
of regions in the ventral temporal cortex (VTC; Sathian et al. 2011;
Podrebarac et al. 2014). We used an independent visual texture
localizer run to identify regions in the temporal and occipital
lobe possibly also involved in haptic texture processing, because
the exact cortical locations of temporal and occipital cortical re-
gions in haptic texture perception are still a matter of debate
(Merabet et al. 2004, 2007; Sathian et al. 2011; Eck, Kaas, Goebel,
et al. 2013; Podrebarac et al. 2014). To avoid bias, we also included
areas in our analysis that were less consistently reported in the
context of haptic texture perception, such as the posterior par-
ietal cortex (PPC; Merabet et al. 2007) and the lateral prefrontal
cortex (Kitada et al. 2005).

Material and Methods

Participants

Thirteen right-handed, healthy volunteers (9 women and 4 men)
with normal or corrected-to-normal vision participated in the
study. The mean age was 27 (range: 21-32) years. Subjects with
calluses or (a history of) injuries to the hands were excluded

from participation. All participants were graduate and under-
graduate students at Maastricht University and received course
credit or monetary compensation for their participation in the
experiment. The local ethics committee approved the study
and participants gave written informed consent. One subject
(s04) had to be excluded from data analysis due to technical pro-
blems resulting in corrupted imaging data.

Stimuli

Visual Texture Localizer

The stimulus set consisted of 16 texture and 16 shape pictures as
well as scrambled versions of the same images. Texture stimuli
were grayscale top-view photographs of everyday textures, for
example, abrasive paper, cork, carpet, foam material, wallpaper,
Nepal wool, and felt. All texture stimuli were the same size.
Shape stimuli were grayscale images of abstract 3D shapes, all
made of the same material and with approximately the same
size. The shape photographs were taken from a slightly tilted
front-view perspective to emphasize the three-dimensional
characteristic of the objects. Since the images varied slightly in
size, a gray circle area with a radius of 200 pixels was created
around each picture to match the size of the stimulated visual
field across both categories. Scrambled versions of all stimuli
were generated by segmenting the image (including the gray cir-
cle area) into 64 pixel blocks and rearranging them by generating
random permutations of the blocks in the image. In order to con-
trol for differences in low-level visual properties between image
categories, the luminance and contrast of each image were ad-
justed to match the average luminance and contrast of the stimu-
lus set. The background of all pictures was set to black (Fig. 1). No
analysis was based on the scrambled images in the present study,
but these stimuli were included for another functional localizer
experiment.

Haptic Texture Exploration Tasks

Haptic stimuli consisted of six 5 x 5 cm? plastic dot pattern tex-
tures. Each dot was 0.8 mm in diameter and 0.6 mm in elevation.
The dots were arranged non-periodically on the plates. The only
characteristic that varied between the textures was the mean
center-to-center dot spacing and hence the number of texture
elements (Fig. 2). Details about the algorithm used to produce
these textures can be found in Eck, Kaas, Mulders, et al. (2013).
It has been found that haptic roughness perception of these dot
pattern textures follows approximately an inverted U-shape
curve, peaking at about 3-4 mm interelement spacing (Connor
et al. 1990; Merabet et al. 2004, 2007; Gescheider et al. 2005; Eck,
Kaas, Mulders, et al. 2013). On the other hand, for density and dis-
tance perception, a linear function can be expected with increas-
ing interdot spacing (Merabet et al. 2004; Eck, Kaas, Goebel 2013).
Using the same stimulus set to sample the roughness and dens-
ity curve at different curve sections allows us to identify cortical
responses that vary with perceived stimulus characteristics, ra-
ther than purely presenting differences in the physical stimulus
properties (i.e., interelement spacing). The interdot spacing of the
textures selected for this study was 1.50, 2.25, 3.50, 4.50, 5.50 and
8.25 mm. Figure 3 illustrates the locations of these textures on the
perceived roughness and density curve [as hypothesized based
on previous behavioral studies (Merabet et al. 2004; Eck, Kaas,
Mulders, et al. 2013)].

Experimental Set-up

We used a similar experimental set-up as published previously
(Eck, Kaas, Goebel 2013). All dot pattern stimuli were placed on
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Figure 1. Examples of stimuli used in the visual texture localizer runs. Top row: textures. Bottom row: shapes.
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Figure 2. Magnified excerpts of the dot pattern textures used in the haptic experimental runs.
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Figure 3. Schematic representation of the stimulus space with regard to the
expected roughness and density ratings.

a circular wooden board, covered by another plate with a rect-
angular cutout that ensured that subjects could touch only a sin-
gle texture. The entire presentation device was placed over the
thighs of the participant and was attached to the scanner table.
The right hand of the subject, meant to explore the textures,

was placed on top of the cover plate, whereas the left hand,
that operated the button box, lay next to the participant’s legs.
To reduce movement during the scanning, both arms were sup-
ported by foam padding. The experimenter, who was standing
next to the scanner bore, controlled the presentation of the hap-
tic stimuli. Visual cues were displayed centrally on a black back-
ground. The images were projected onto a rear-projection screen
at the end of the scanner bore and subjects viewed the stimuli via
a mirror mounted to the head coil. Stimulus timing and presen-
tation was controlled by the Presentation® software (Neurobeha-
vioral Systems, Inc., Albany, CA, USA).

Experimental Procedure

Visual Texture Localizer
Texture and shape images as well as scrambled versions of both
categories were presented in separate blocks of 8, each block last-
ing 16s. The 4 different block types (i.e., texture, shape,
scrambled texture, and scrambled shape) were interleaved with
16 s blocks of rest. Each image was presented 3 times during
the independent localizer run.

Both stimulus presentation within category blocks and the
order of blocks was randomized. For task blocks, subjects were in-
formed about the category of the next block (i.e., “Scrambled”,
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“Texture”, or “Shape”) by an auditory cue via headphones 700 ms
before block onset. The beginning of the rest interval was cued by
the word “Rest”. After the last image in each texture and shape
block, a question was displayed asking whether the last item pre-
sented was presented before in the same block. This task was
chosen to ensure subjects’ attention to the images. Subjects re-
sponded by pressing 1 of 2 buttons on a response box attached
to their left hand. For the scrambled texture and shape blocks,
subjects were instructed to passively view the images. During
picture presentation, a red fixation dot was displayed in the cen-
ter of the screen, whereas a white fixation dot was presented dur-
ing rest blocks. Participants were asked to fixate on these dots
during the localizer run.

Haptic Texture Exploration Tasks

Subjects were informed that they would be presented with one
haptic texture at each trial. In “Rating” runs, participants had to
judge the perceived roughness or spatial density after stimulus
presentation, whereas in the “No-Estimation” runs subjects
were told to focus on the haptic exploration of the textures. The
experimenter stressed the importance of focusing on the mere
stimulus exploration in the No-Estimation runs as in contrast
to judging the perceived stimulus properties in the Rating runs.
Participants explored the textures by sweeping 4 times with
their right index-, middle-, and ring fingers (simultaneously)
across the surface. After this exploration movement, subjects
placed their hand back in the resting position on top of the wood-
en cover plate. In the Rating runs, the haptic exploration interval
(4 s) was followed by a jittered delay (5-9 s) and a rating time win-
dow (3 s). These task trials alternated with rest intervals of 12—
14 s (jittered). During the rating time window, subjects were
asked to judge the perceived roughness or density of the previ-
ously explored dot pattern on a 400 pixel visual analog scale
(VAS) ranging from very smooth/sparse to very rough/dense.
The slider of the VAS was moved to the left or to the right by
pressing 2 buttons on a fiber-response box attached to the sub-
ject’s left hand. In the beginning of the rating interval, the slider
was positioned in the middle of the scale. In the No-Estimation
runs, exploration was immediately followed by a rest time win-
dow (Fig. 4). Auditory cues delivered via headphones in the inter-
trial intervals (rest) instructed the experimenter to turn the
haptic presentation device to the correct stimulus for the next
trial. Subjects in turn used visual cues to identify the correct
trial phase. A red dot presented in the center of the screen indi-
cated the haptic exploration interval, a blue dot marked the
delay period, and a white dot presented the rest interval. Density
and roughness conditions were blocked in the Rating runs and
the words “Roughness” and “Density”, displayed on the screen
in the beginning and the middle of the runs, indicated the task
for the upcoming trials. The labeling of the endpoints of the
VAS was adapted to the task condition. The order of the task
blocks was varied across runs and was changed for all partici-
pants. Each of the 6 dot patterns was repeated 15 times in each
task condition (roughness vs. density rating vs. no-estimation)
over the course of the fMRI experiment.

Each subject participated in 3 experimental sessions on 3 dif-
ferent days. In the first experimental session, subjects were fa-
miliarized with the Rating and No-Estimation runs in a mock
scanner. This was done to minimize movement artifacts in the
following scanning sessions. Subjects practiced the exploration
movement, and were introduced to the VAS and the sensitivity
of the response button box. Participants were instructed and
trained to perform an exact onset and offset of the exploration
movement in synchrony with the color changes in the fixation

dot. Furthermore, they were asked to use the same movement
timing, movement direction, and contact force for all trials. The
same stimuli as in the fMRI experiment were used in the practice
session to familiarize participants with the stimulus range; each
stimulus was repeated 4 times within the 3 task conditions. The
practice session lasted until: (1) Subjects were comfortable with
the tasks, (2) the movement was experienced by the subject as ef-
fortless, (3) the movement was synchronized with the duration of
the exploration interval, and (4) all other motion was reduced to a
minimum. The average duration of the mock scanner session
was approximately 30 min. The second session consisted of the
visual texture localizer run and 5 No-Estimation runs, each 170
volumes long and therefore lasting about 6 min. In the third ses-
sion, participants completed the 5 Rating runs, each 510 volumes
long, lasting 17 min. Data for the Rating and No-Estimation runs
were acquired in different sessions to keep the scanning time in
each session within a reasonable timeframe.

Data Acquisition

Data were acquired at the Maastricht Brain Imaging Center
(Maastricht, The Netherlands) with a 3-T Siemens Allegra MR
head scanner equipped with a standard quadrature birdcage coil.
In both scanning sessions, a standard anatomical T;-weighted
data set was acquired using a magnetization-prepared rapid ac-
quisition gradient-echo (MPRAGE) sequence covering the whole
brain [repetition time (TR)=2250 ms, echo time (TE)=2.6 ms,
flip angle (FA)=9°, matrix: 256 x 256, voxel size: 1x1x 1 mm,
192 slices]. In the first scanning session, this was followed by
the 5 No-Estimation runs, a short break, and the visual texture lo-
calizer run, whereas in the second scanning session the anatom-
ical image acquisition was followed by the 5 Rating runs. All
functional images were obtained with a T,*-weighted echo-pla-
nar imaging sequence (TR = 2000 ms, TE = 30 ms, FA = 90°, matrix:
64 x 64, field of view: 224 x 224, slice thickness = 3.5 mm, 32 slices
covering the whole brain, no gap).

Data Analysis

Trials in which subjects either missed the exploration or the rat-
ing interval of the haptic stimulus, or for which the timing of the
exploration movement was incorrect, were removed from behav-
ioral and fMRI data analysis. One subject missed 4 of 90 trials in
the density rating task; in all other subjects, the number of
missed/incorrect trials did not exceed two for any of the task
conditions.

Behavioral Data Analysis

To evaluate the variability of the ratings across subjects and repe-
titions, the mean roughness and density curve was assessed for
each subject (Fig. 5). For the majority of subjects, the mean rough-
ness and density curve was comparable with the results of our
previous behavioral study (Eck, Kaas, Mulders, et al. 2013). How-
ever, for some of the participants perceived roughness did not de-
crease as much for wider interdot spacing as was hypothesized
based on the literature using similar stimuli (Connor et al. 1990;
Merabet et al. 2004, 2007; Gescheider et al. 2005; Gescheider and
Wright 2013). This high interindividual variability was not ex-
pected, but the minimally sampled stimulus space with 6 stimuli
only versus 29 stimuli in our earlier study might have influenced
the results. Subjects who did not show a decrease in perceived
roughness below the middle of the VAS scale (0) for wide dot spa-
cing textures had to be excluded from data analysis, because an
unambiguous categorization of stimulus spacings to different
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Figure 4. Illustration of the experimental trials for the No-Estimation and Rating runs. ITI: intertrial interval.

roughness classes (independent from perceived density) was not
possible. This was important as a combination of a rating and
spacing criterion was used to assign stimuli to the low roughness
category in order to avoid a complete overlap with the high dens-
ity category for the multivariate analysis of the fMRI data (see de-
tails below). To ensure that trial labels could be defined
unequivocally, we avoided an overlap in behavioral ratings be-
tween trials of different categories of the same perceived texture
characteristic. Therefore, participant s05, s06, s09, and s13 were
excluded from the data analysis and are not considered in the fol-
lowing descriptions.

For multivoxel pattern classification, we grouped the fMRI
trial data into categories. Based on the mean roughness and
density ratings, trial categorization to low and high density/
roughness classes was performed as follows. For the high density
and roughness class, we selected the 2 dot pattern textures with
the highest mean ratings. Hence, for all subjects, the trials with
1.50 and 2.25 mm interdot spacing were categorized as high
density, whereas the 3.50- and 4.50-mm stimuli were grouped
to a high roughness class. For the low density class, we selected
the 2 stimuli with the lowest mean density ratings over all repeti-
tions, that is, 5.50 and 8.25 mm interdot spacing for all subjects.
For the low roughness class, we combined this rating criterion
with a spacing criterion. We selected the stimulus with the
lowest roughness rating in the wide interdot spacing range
(4.50-8.25 mm), that is, 8.25 mm for all subjects, and the stimulus
with the next lowest roughness rating in the close interdot spa-
cing range (1.50-3.50 mm), that is, 1.50 mm for 5 of 8 subjects

and 2.25 mm for 3 of 8 subjects. This ensures that an above-
chance classification of the high and low roughness category is
neither confounded with stimulus spacing nor with perceived
density.

To ensure unambiguous category representations, individual
trials with ratings that could not be clearly assigned to either the
high or low category (border trials) were excluded from data ana-
lysis. Trials in the No-Estimation runs with the same interdot
spacing stimuli as in the high and low density categories of the
Rating runs were grouped in a close and a wide spacing category.
An overview of trial categorization can be found in Table 1. Task
classification, that is, trials in the roughness task blocks versus
density task blocks, was based on all dot pattern textures. The ra-
tionale of this analysis was to investigate the effect of task in-
structions independently of the objective stimulus space.

fMRI Data Preprocessing

Functional and anatomical data were analyzed with BrainVoya-
ger QX 2.4.2 (Brain Innovation, Maastricht, The Netherlands).
The first 2 scans of each functional run were discarded to allow
for T, equilibration. Preprocessing of the functional data in-
cluded: slice scan time correction, intrasession alignment to de-
tect and correct for small head movements by rigid body
transformations, temporal filtering removing linear trends, and
nonlinear temporal frequencies of 3 or less cycles per run. No
subjects had to be removed because of excessive head motion.
Functional images of all runs were coregistered to the anatomical
volumes of the respective subject and scanning session and
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Figure 5. Mean density and roughness ratings for all dot pattern textures averaged over all repetitions and separately for all subjects. Error bars represent the standard
deviation. Subjects highlighted in gray were excluded from all subsequent analyses.

Table 1 Summary of trial categorizations to roughness (R), density (D), spacing (S), and task classes

Subject Dot pattern spacings grouped Dot pattern spacings grouped Number of trials in categories (high/high/
in high/high/close category in low/low/wide category close/R-task, low/low/wide/D-task)
R D S R D S R D S Task
s01 3.50 1.50 1.50 1.50 5.50 5.50 297 30 30% R: 89%
4.50 2.25 2.25 8.25 8.25 8.25 30 297 30 D: 89
s02 3.50 1.50 1.50 2.25 5.50 5.50 272 29 292 R: 847
4.50 2.25 2.25 8.25 8.25 8.25 28 28% 30 D: 86
s03 3.50 1.50 1.50 1.50 5.50 5.50 297 307 30% R: 88*
4.50 2.25 2.25 8.25 8.25 8.25 29 30 30 D: 90
s07 3.50 1.50 1.50 1.50 5.50 5.50 28% 29 292 R: 86%
4.50 2.25 2.25 8.25 8.25 8.25 28 282 30 D: 87
s08 3.50 1.50 1.50 2.25 5.50 5.50 272 282 30? R: 84%
4.50 2.25 2.25 8.25 8.25 8.25 27 28 30 D: 86
s10 3.50 1.50 1.50 1.50 5.50 5.50 27 28 292 R: 837
4.50 2.25 2.25 8.25 8.25 8.25 26% 272 30 D: 85
s11 3.50 1.50 1.50 2.25 5.50 5.50 27¢ 30° 30* R: 85%
4.50 2.25 2.25 8.25 8.25 8.25 28 30 30 D: 90
s12 3.50 1.50 1.50 1.50 5.50 5.50 292 30 30? R: 87¢
4.50 2.25 2.25 8.25 8.25 8.25 29 292 30 D: 89

Note: All dot pattern spacings were used in the Roughness-Density Task Classification.
#Number of trials per class used for both categories in the MVPA.

transformed into Talairach space resulting in an interpolated
functional voxel size of 3 x 3 x 3 mm. Based on the T;-weighted
anatomical data sets, individual surface reconstructions of the
cortical sheet were created employing an automatic white-gray
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matter segmentation approach. Segmentation errors of the auto-
matic procedure were manually post-corrected. These individual
cortical surfaces were aligned to a moving target group average
by using a curvature-driven cortical mapping approach (Goebel



et al. 2006; Frost and Goebel 2012). The results were used to create
an average cortex representation of all subjects. Furthermore, the
mapping parameters from cortex-based alignment (CBA) were
used to align individual statistical maps to the group-average
cortical surface.

Univariate Data Analysis

For group analysis, a whole-brain fixed-effects regression ana-
lysis (FFX) was chosen because of the sample size of N =8 [after
removal of participants with corrupted data (s04) and similar
roughness and density rating curves (s05, s06, s09, and s13)].
Three different general linear models (GLMs) were used to ad-
dress different aspects of the research question.

The first model was comprised of 7 predictors. All spacing
trials of the roughness task condition were grouped to one pre-
dictor and the same was done for all trials in the density task
blocks. These 2 predictors were defined for each of the 3 trial in-
tervals, thatis, haptic exploration, delay, and rating interval. The
presentation of the visual cues “Roughness” and “Density” dur-
ing the experimental runs was modeled as the seventh predictor.
One contrast was computed for that model asking for differences
between the roughness and density task during haptic explor-
ation, irrespective of the stimulus characteristics (“Exploration:
roughness # density”).

In a second model, task-related predictors were defined based
on the trial categorization in the Rating runs as explained above.
There were 3 rating categories: high, low, and a residual category
for trials that could not be assigned to the high or low category.
This resulted in a total of 19 predictors (3 trial phases [explor-
ation, delay, rating] x 2 haptic tasks [roughness, density] x 3
categories [low, high, remaining trials] + 1 visual cue predict-
or). Two different contrasts were computed for the haptic ex-
ploration interval of that model, namely “Exploration: high
roughness # low roughness” and “Exploration: high density #
low density”.

The third model is based on the No-Estimation runs. Three
predictors were defined, representing trial categorization with re-
gard to the objective stimulus characteristics, that is, interdot
spacing of the textures. Two predictors contained the close and
wide interdot spacing trials, whereas a third predictor repre-
sented the remaining dot pattern trials. The contrast computed
for that model compared close and wide spacing trials (“Explor-
ation: close spacing # wide spacing”).

All predictor time courses were convolved with a two-
gamma hemodynamic response function to account for the
hemodynamic response delay. The voxel threshold for statistic-
al significance was first set to o = 0.005 uncorrected, and all stat-
istical contrast maps were then corrected for multiple
comparisons using cluster size thresholding (Forman et al.
1995; Goebel et al. 2006) with a cluster-level false-positive rate
of =0.05.

Multivariate Data Analysis

To reduce the number of initial features for multivariate data
analysis, anatomical and functional masks were defined on the
individual cortical meshes.

Anatomical Cortex Masks. Anatomical regions of interests (ROISs)
were delineated on the individual cortex meshes. All regions, in-
cluding the S1, were defined bilaterally, because recent studies
also show a contribution of the ipsilateral S1 in tactile stimulus
anticipation (van Ede et al. 2014) and learning (Sathian et al.
2013).
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The PPC region included the superior parietal and inferior
parietal lobule—separated by the intraparietal sulcus (Culham
and Valyear 2006). The second region, which included the S1,
was defined by the location of the PoCG and the central sulcus
(CS; Sanchez-Panchuelo et al. 2010; Stringer et al. 2011).

The third region, operculo-insular cortex (Oplns cortex), cir-
cumscribed the insular cortex and the parietal operculum on
which the human secondary somatosensory cortex (S2) is located
(Eickhoff et al. 2007, 2008; Mazzola et al. 2012). The fourth ana-
tomical ROI was the frontal/prefrontal cortex. The approximate
boundaries of this cortical patch were defined as follows. The
posterior boundary was the inferior precentral sulcus (PreCS)
and the superior boundary was the superior frontal gyrus. The in-
ferior boundary was the inferior frontal gyrus and the anterior
boundary was up to, and including, the lateral part of the fronto-
polar prefrontal cortex. The coverage of the anatomical masks
was intentionally slightly bigger than in conventional studies
(e.g., Goulas et al. 2012) to account for interindividual differences
in anatomical-functional correspondence.

Functional Cortex Masks. Based on the functional localizer run, a
regression analysis was computed with 6 predictors: Texture
block, Shape block, Scrambled texture block, Scrambled shape
block, Question, and Response. To identify regions in the tem-
poral and occipital lobe that show a tendency to respond stronger
to texture than to shape images within our sample of N=8, we
ran the above-described GLM first at the FFX level, with a tem-
poral and occipital lobe mask for all participants, comparing tex-
ture and shape blocks (Texture block>Shape block). We
identified a bilateral posterior occipital cortex cluster (pOCC)
and a bilateral cluster in the VTC bordering the fusiform gyrus
(FG) and the CoS (Fig. 6A). Afterwards, we ran the same model
and contrast on the single-subject level, identifying activation
clusters in each individual subject. Statistical maps were thre-
sholded as described above. The number of voxels in the result-
ing clusters varied substantially between individuals. To reduce
size differences between the anatomical and functional cortex
masks, we defined the 4 subject-specific cortex masks in the tem-
poral and occipital lobe as 800 voxel regions around the cluster-
specific peak voxels in the individual Texture versus Shape
contrast. Significant activation clusters were identified in 7 of 8
subjects in the left hemisphere of the posterior occipital cortex;
this was also true for 6 of 8 participants in the right pOCC and
the left VTC. Above-threshold activations were, however, only
present in 3 of 8 subjects in the right VTC. For participants in
which any of the 4 regions were not present in the thresholded
individual contrast maps, the subject-specific peak voxel within
the respective FFX cluster was determined and used as the origin
of the mask definition. A summary of the subject-specific peak
voxels can be found in Table 2.

The location of the bilateral masks is illustrated on the right
average cortex representation in Figure 6B. Due to interindividual
differences in anatomy, no perfect overlap of individual cortex
masks and the subject-averaged folding pattern of the cortical
sheet can be expected even after macroanatomical alighment
(CBA).

Four different models were considered for multivariate pattern
analysis on single-subject level, separately for all 6 individual
cortex masks: (1) roughness versus density haptic exploration
trials (Rating runs), (2) high versus low density haptic exploration
trials (Rating runs), (3) high versus low roughness haptic explor-
ation trials (Rating runs), and (4) close versus wide spacing haptic
exploration trials (No-Estimation runs). Mask voxels with a mean
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raw signal intensity below 70 and a standard deviation below 1 and models. The response pattern of a single trial was estimated
were excluded from data analysis to reduce noise in the data. Sin- by extracting the average signal for TR 2, 3, and 4 after onset of the
gle-trial estimation was performed by creating separate multi- haptic exploration interval. This signal was transformed to per-
voxel response patterns for all trials, subjects, region masks, cent signal change by dividing it by the mean baseline signal of

A Texture Localizer

pOCC LH

w
w

L]
N

o

fMRI response (% BOLD signal)
-

: fMRI response (% BOLD signal)
(-] -

3 7 10 4 7 10
Time (scans) Time (scans)

Texture

Shape

~N
N

-
[

o

e
fMRI response (%o BOLD signal)

fMRI response (% BOLD signal)

1
[

4 7 10 a7 10
Time (scans) Time (scans)

I
N

Figure 6. Anatomical and functional masks. (A) FFX contrast map of the texture localizer: Texture block > Shape block overlaid on the average cortex reconstruction of all
subjects. (B) Probability map of individually defined cortex masks illustrated on the average cortical sheet of the right hemisphere. Only vertices that are represented in 6 of
8 subjects’ masks are color-coded. PPC: posterior parietal cortex; PoCG: postcentral gyrus; CS: central sulcus; PFC: prefrontal cortex; pOCC: posterior occipital cortex; VTC:
ventral temporal cortex.
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Table 2 Individual peak voxels in the occipital and temporal lobes of the contrast maps: Texture block > Shape block

Subject Right pOCC Left pOCC Right VTC Left VTC

Talairach coordinate Talairach coordinate Talairach coordinate Talairach coordinate

X, ¥,z t-value X, ¥,z t-value X, ¥,z t-value X, ¥,2 t-value
s01 17,-98,0 5.8 -25,-92, -6 8.2 26, —44, 15 5.6 —34, 47, -15 6.2
s02 20, 101, 0 75 -13,-92, 0 10.2 29, 56, -9 4.3? -25, -59, —12 6.8
s03 8,-92, —18 3.9 -19, -95, —21 46 23, -41, -18 3.62 -28, -53, -18 2.62
s07 14, -83, -6 6.9 -25,-92, -9 6.8 20, —-50, —12 5.8 -28, 59, -18 5.7
s08 17, -95, -6 5.7 -16, -92, -3 7.1 24, -53, 15 3@ -19, -59, —24 5.9
s10 11, -95, -6 3.6% -16, -92, -15 5.8 23, -38, -15 432 -25,-35,-18 5.5
sl1 14, -92, -6 3.22 -25, -89, -3 3.6% 32, =56, -9 312 -25, -56, —-15 24%
s12 8, -92, 21 47 -13,-101, 6 5.4 29, —26, —18 5.3 -28, -65, —15 48

Note: Talairach coordinates of the peak voxels with the respective t-values.
#Individual peak voxels in FFX clusters.

TR -2, -1, 0 with regard to stimulus onset and multiplying it by
100. The extracted single-trial responses of each voxel were nor-
malized by subtracting the mean and dividing by the standard
deviation of the training trials of the respective voxel. Depending
on the trial categorization scheme of the 4 different models, trial
response patterns were labeled according to the classes de-
scribed above (low/high density/roughness/spacing or density
vs. roughness trials irrespective of the stimulus differences).
See Table 1 for the number of trials per class and subject. To
equalize the number of trials per class in each model, we used
as many trials for analysis as were available in the class with
the lowest number of trials (marked in the footnote “a” of Table 1).
These trials were selected randomly. However, within a subject
and model, the same number of trials was used for both classes.

For analysis of the multivoxel patterns, we combined linear
support vector machines (SVMs) with an iterative multivariate
voxel selection approach—recursive feature elimination (RFE;
De Martino et al. 2008)—in order to remove non-informative vox-
els that can degrade classification performance. For classifier
training, we used a training set containing 20 of all category trials
for the roughness, density, and spacing model and 60 trials for
the task model. The test set used for assessing the performance
and generalization ability of the classifier consisted of the

remaining trials. The RFE algorithm started with the full number
of voxels in the masks. At each RFE iteration, 2/3 of the training
data were used to train a least square SVM (Is-SVM; Suykens
et al. 2002). The classification model (i.e., weights) was used to
create discriminative maps that indicate the importance of
each voxel to class discrimination. There were 20 iterations,
each repeating this procedure with a different subset of training
trials. Each RFE voxel selection level was concluded by averaging
the discriminative weights for each voxel over the 20 iterations,
ranking the average discriminative weights and discarding vox-
els among the lowest 6% corresponding to the smallest ranking.
The number of RFE voxel selection levels was adapted to the ini-
tial mask size and ranged from 61 to 84.

The entire RFE procedure was performed in 20-fold cross-
validation. See Figure 7 for a summary of the multivariate ana-
lysis approach. The final accuracy at each RFE voxel selection
level was computed as the mean over these 20 cross-validations.
The classification performance reported below represents the
average maximum accuracy across all RFE voxel selection levels.

A two-step procedure was used to assess whether the differ-
ence between the actual accuracy and the empirical chance level
was significantly above 0 across subjects for a specific model and
region. In a first step, permutation tests were performed for each
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Figure 7. Overview of the multivariate data analysis illustrated on the high/low density classification within the PoCG mask of a single subject. (A) fMRI time course data
were extracted from all voxels within the defined mask. (B) Features were defined for all trials and for each density class separately by selecting the mean signal of the
second, third, and fourth scans after stimulus onset, visualized by the second gray segment in the upper row plots. This stimulus-related signal was percent-normalized
using the baseline signal, represented by the first gray segment in the same plots. The green demarcated time interval represents the stimulus duration of 4000 ms. The
lower two plots show the multivoxel response patterns of all trials within both categories for 100 out of the initial 1800 PoCG mask voxels of that participant. The plot below
represents the averaged pattern over all trials for the same 100 voxels, separately for both density classes. (C) The RFE approach was used to reduce the number of voxels
and select the pattern with the most discriminative information. (D) An independent set of test trials was used to test the generalization performance of the classifier.

subject and ROI. We used exactly the same feature extraction and
SVM-RFE combination approach as explained above, but labels
were randomly assigned to trial response patterns and the per-
mutation was repeated 100 times. The final accuracy value of a
single permutation was defined as the maximum prediction ac-
curacy across all RFE steps, averaged over all cross-validations.
The accuracies of all 100 permutations represent the permuta-
tion distribution of the chance level. The medians of these sub-
ject-specific null-distributions were used in the second step
employing an exact permutation test. Assuming that the null hy-
pothesisis true, namely that the actual accuracies across subjects
are at chance level, multiplying any of the subjects’ difference
(actual accuracy - median permutation accuracy) by -1 will
have no effect on the correctness of the null hypothesis. Consid-
ering a sample size of 8 subjects, there are 28 (256) permutations
possible. These permutations constitute an estimate of the stat-
istical distribution of the random effects (RFX) null hypothesis.
Above-chance classification across subjects was assumed when
the mean of the subject-specific differences was at or above the
95th percentile of the null distribution.

To visualize regions that are involved in task or roughness/
density/spacing classification across subjects, single-subject
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maps were combined to a discriminative group map. For each
subject, a map was created showing voxels that survived at
least 25% of the RFE voxel selection levels. These maps were
sampled on the reconstructed cortex of each subject and aligned
to the group-average cortex mesh using the CBA parameters. To
combine the single-subject maps to a group map, only vertices
that were present in at least 6 of the 8 single-subject maps were
color-coded. The group-average map was thresholded by apply-
ing a cluster size threshold of 25 mm?. This approach was applied
for each model and region mask.

Results

Univariate Data Analysis

A direct statistical comparison of the haptic exploration interval
in the density and roughness estimation task, irrespective of the
stimulus spacing, showed no significant difference in the uni-
variate activation maps for both tasks. The same was true for
the comparison between low and high roughness trials in the
roughness rating task and wide and close spacing trials in the
No-Estimation runs. Only the comparison of high versus low



density trials in the density rating task revealed significantly
lower activations for high density trials (close stimulus spacing)
in the ipsilateral PoCG extending into the postcentral sulcus
(PoCS; peak voxel: t(;0184) = —4.43, P < 0.001), including Brodmann’s
area 1 (BA1l). An event-related average showed that this effect
represents differences above baseline level (Fig. 8).

Multivariate Data Analysis

Effects of Task Instructions

For the task classification, haptic exploration trials were labeled
according to the task instructions, that is, roughness versus spa-
tial density estimation, irrespective of the perceived texture prop-
erties. The classifier performance of distinguishing fMRI patterns
elicited by haptic texture exploration between the 2 tasks was sig-
nificant at the group level for both early sensory and higher-order
brain regions. The mean accuracy across all 8 subjects reached
56.5% in the PoCG (chance level: 51.6%, P = 0.004). This was signifi-
cantly above the empirical chance level as determined by the
exact permutation test. Similar results were obtained in all
other ROIs. Both the mean classification accuracy of 57.9%
(chance level: 51.3%, P=0.004) in the operculo-insular region
and of 58.7% (chance level: 51.5%, P =0.004) in the PPC were sig-
nificant at the group level. Significant above-chance classification
was also confirmed for the lateral prefrontal cortex (58.9%,
chance level: 51.7%, P=0.008), the posterior occipital cortex
(56.1%, chance level: 51.6%, P=0.012), and the VTC (56.2%, chance
level: 51.4%, P =0.024). As all regions showed significant above-
chance classification, we tested the validity of the chosen ap-
proach by performing the task classification in a control region,
that is, the Heschl’s gyrus. In this region, the classifier perform-
ance did not exceed the empirical chance level (52.4%, chance
level: 51.3%, P=0.082, see Supplementary Fig. 1).

Voxels in the PoCG mask that were discriminative for task
classification and were consistent across at least 6 of 8 subjects
over at least 25% RFE selection levels were observed at a typical
location for tactile stimulation of the fingers, just posterior to
the hand knob area of the contralateral motor cortex (Yousry
et al. 1997; Stippich et al. 1999). However, discriminative voxels
were not restricted to that region, but extended to more inferior
and superior sites of the PoCG. Moreover, even the ipsilateral
PoCG showed a contribution to task classification, albeit less pro-
nounced than its contralateral match. The group discrimination
map of the PoCG overlapped with BA3b and BA1. These subre-
gions were identified based on the SPM Anatomy toolbox (Geyer
et al. 1999, 2000). In addition to these rather early somatosensory
regions, voxels in the PPC mask also survived the thresholding
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criterion for the group discrimination map, that is, in the bilateral
supramarginal gyrus, the superior parietal lobule, and the anter-
ior and posterior operculo-insular cortex. The parietal opercular
regions covered the somatosensory fields OP1/4 and OP3 and
were labeled according to the SPM Anatomy toolbox (Eickhoff,
Amunts, et al. 2006; Eickhoff, Schleicher, et al. 2006). In the visual
cortex, discriminative voxels were revealed in the posterior cal-
carine sulcus (pCS) bordering the cuneus and the lateral pOCC
and in higher-order regions of the VTC, that is, primarily in the
anterior CoS, but also in the FG, the parahippocampal gyrus,
and the occipito-temporal sulcus. Finally, voxels discriminating
task instructions were also found in the posterior part of the bi-
lateral superior frontal sulcus close to the frontal eye fields and
in a left-hemispheric middle frontal gyrus region.

Effects of Perceived Density

Haptic texture exploration trials within the spatial density judg-
ment task were labeled according to individual density ratings.
This resulted in 2 trial categories that represented textures that
were perceived as either dense or sparse. The classifier perform-
ance for density trials exceeded the empirical chance level in 3 of
the 6 predefined cortical areas, with 2 of them representing early
sensory regions. One of them was the PoCG that showed an aver-
age classification performance of 59.1% across subjects (chance
level: 52.1%, P =0.031) and the other region was the pOCC that
reached a similar above-chance accuracy of 57.3% (chance level:
52.5%, P =0.028). The third cortical site that revealed a significant
classifier performance across subjects was the PPC with 59.2%
(chance level: 52.1%, P=0.012).

The most discriminative voxels for perceived spatial density
classification within the PoCG were located at similar sites as
for task classification, including the region opposite to the hand
knob area of the motor cortex in both hemispheres. The ipsilat-
eral cluster overlapped with the effect of perceived density iden-
tified in the univariate data analysis. There was an additional
cluster in the superior PoCG of the contralateral hemisphere
and one in the inferior PoCG of the ipsilateral cortex. The group
discrimination map in the PoCG overlapped with Brodmann
areas 3b and 1, similar to the task discrimination. Voxels that
were consistent across at least 6 of 8 subjects over at least 25%
RFE selection levels were located in the bilateral pCS extending
to the lateral portion of the pOCC. The spatial properties of
the group discrimination map in the PoCG and the pOCC resem-
ble the results of the task classification within the same
brain regions. However, in contrast to the roughness and density
task classification, the discrimination map of trial classification
according to perceived spatial density only showed discriminative
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Figure 8. Results of univariate data analysis. The effect of perceived density on a region in the ipsilateral PoCG,; t-value [Talairach coordinate] of the peak voxel in that
cluster: —4.43 [43, -27, 44].
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voxels consistent across subjects in the left PPC, contralateral to
the exploring hand. These voxels were restricted to the superior
parietal lobule and the angular gyrus.

Effects of Perceived Roughness

For the roughness judgment task, haptic exploration trials were
labeled according to the individual trial ratings during the fMRI
scanning session. We used the trials in the high and low rough-
ness category for classification of the fMRI patterns. Significant
above-chance classification of perceived roughness was only
found for 2 brain regions, that is, the operculo-insular cortex
and the VTC with a mean group accuracy of 57.8% (chance
level: 52.2%, P =0.020) and 56.3% (chance level: 52.6%, P =0.031),
respectively. None of the other predefined brain areas showed
classification performances that were significant across subjects.

Discriminative voxels for roughness classification across sub-
jects were observed bilaterally in posterior and anterior parts of
the operculo-insular cortex, not restricted to a specific location,
but covering the somatosensory parietal opercular regions OP1
and OP3. This is in contrast to the group discrimination map
within the VTG; here, the most discriminative voxels are clearly
clustered in the CoS and middle FG of both hemispheres and in
the right occipito-temporal sulcus. Although not completely identi-
cal, there is some spatial resemblance of the discrimination map for
task classification and perceived roughness classification in the VTC.

The results of the task, roughness, and spatial density classi-
fication are summarized in Figure 9.

To observe whether the classifier performances for trials dif-
fering in perceived roughness or spatial density were not only su-
perior to chance-level performance in the above-identified brain
regions, but also significantly different between both texture di-
mensions, the roughness and spatial density classifier perform-
ance was directly compared using an exact permutation test.
Hence, for all brain regions that showed an above chance-level
classification for different levels of perceived spatial density or
roughness, the classification accuracies for both texture dimen-
sions were directly compared across all subjects, indicating a
double dissociation in these cortical areas if significant.

Although both spatial density and roughness are dimensions
descriptive of texture, we found a double dissociation of cortical
regions involved in the processing of these texture dimensions.
More specifically, the classifier performance for spatial density
exceeded roughness classification in the early occipital and som-
atosensory cortex as well as in the PPC, whereas the roughness
classifier outperformed the density classifier in one higher cor-
tical region, that is, the operculo-insular cortex. Only in the
VTC was the direct comparison between both classification re-
sults not significant (see Supplementary Fig. 2). Therefore, we
wished to verify that the above-chance classification of perceived
roughness in the VTC was indeed a direct result of differences in
perceived roughness and could not be replicated using another
trial labeling procedure. To that end haptic texture exploration
trials within the roughness judgment task were labeled accord-
ing to individual spatial density ratings in the density judgment
task. These trials, so labeled, were used for checking the specifi-
city of the classifier performance. Hence, 2 classes were created
by grouping stimuli 1.50 and 2.25 mm versus stimuli 5.50 and
8.25 mm in the roughness task. This analysis revealed a non-
significant classifier performance in the VTC (mean accuracy:
53.1%; chance level: 52.6%; P =0.157).

Effects of Stimulus Spacing
Trial labeling according to stimulus spacing was performed for
the haptic exploration intervals in the No-Estimation runs. fMRI

patterns were labeled as close spacing when subjects explored
textures with interdot distances of 1.50 and 2.25 mm. Trials
were grouped to the wide spacing category when subjects
touched textures with interdot spacings of 5.50 and 8.25 mm.
None of the predefined regions showed average classification ac-
curacies for texture spacing that exceeded the empirical chance
level. The average classifier performance across subjects ranged
from 51.5% in the PPC to 54.8% in the PoCG, whereas the empirical
chance level ranged from 51.8% in the posterior occipital cortex to
52.5% in the PPC (see Supplementary Fig. 3).

Discussion

The current study combined psychophysical and imaging meth-
ods to investigate whether the cortical networks underlying
density and roughness perception might specifically reflect com-
plexity differences in the mapping between the physical and per-
ceptual space. To this end, fMRI signal patterns elicited by the
haptic exploration of dot pattern textures in a roughness and spa-
tial density estimation task were compared. Significant classifi-
cation accuracies were revealed in all predefined regions, thus
confirming previous findings on their involvement in general
haptic texture processing. We then went on to investigate
whether these same regions hold information about the level of
the perceived texture characteristics, that is, the roughness and
spatial density rating on each individual trial. In agreement
with our hypothesis, we found that information on the perceived
spatial density level could be extracted from early sensory corti-
ces, that is, the PoCG (PoCG/CS) and posterior occipital cortex
(pOCC), as well as from the PPC, whereas the perceived rough-
ness level could be extracted from higher-order association corti-
ces only, that is, the operculo-insular (OplIns) cortex and the VTC.
This result indicates that the cortical texture processing reflects
the different complexities of the evaluated haptic texture dimen-
sions, with spatial density information being already available in
early sensory regions and information indicative of perceived
roughness only in higher-order cortical regions. The pattern of
early sensory regions representing simple (spatial density) and
higher-order regions more complex texture dimensions (rough-
ness) was not only restricted to the somatosensory regions, but
was also present in the classical visual cortex, despite the fact
that subjects performed a purely haptic task.

To be able to dissociate spatial density and roughness, we re-
lied on a specific stimulus set for which these perceptual texture
dimensions were associated with different psychophysical func-
tions of interelement distance. Overall, the results of the behav-
ioral data analysis corroborate these earlier psychophysical
findings with a simple linear relationship of interdot spacing
and perceived spatial density and an inverted U-shape function
of perceived roughness (Connor et al. 1990; Merabet et al. 2004,
2007; Gescheider et al. 2005; Eck, Kaas, Mulders, et al. 2013;
Gescheider and Wright 2013). The psychophysical curve of per-
ceived roughness, however, showed some variation across sub-
jects, in particular the slope of the roughness decrease was
affected by interindividual variability. This could be either an ef-
fect of the minimally sampled stimulus space in the current
study or an effect of subjects having used different rating strat-
egies for wide dot spacing textures. To reduce variability in rating
strategies and to ensure an unambiguous roughness categoriza-
tion of the textures, data from 8 participants with the most con-
sistent and clearly dissociated psychometric curves were
included in the fMRI data analysis.

The neuronal correlates of the psychometric curves were in-
vestigated using uni- and multivariate approaches. The latter
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Figure 9. Results of multivariate data analysis. The left side of the figure shows the average classification accuracies across all subjects together with the average
permutation accuracies for all predefined regions; the bars represent the standard error of the mean (SEM). In the right panel, group discrimination maps are
presented on the average cortex reconstruction of all subjects. The color-coding of the vertices represents the consistency across subjects within the different
predefined regions. Green-colored voxels outlasted at least 25% of the RFE selection steps in at least 6 of 8 subjects (75%), whereas white-colored voxels survived in all

subjects (100%).

provided the high sensitivity needed to detect the small signal
changes expected for a task with similar sensory input, but a
change in perceptual focus. The univariate analysis of the neu-
roimaging data revealed a significant effect of perceived spatial
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density in the right but not in the left postcentral cortex. This re-
sult is unexpected considering that subjects performed the task
with their right hand. However, an event-related averaging ana-
lysis in that region clearly showed that this effect was not due to
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signal differences below the baseline level. Furthermore, al-
though not as common in the literature as contralateral activa-
tion changes, effects in ipsilateral postcentral regions have
been reported before for tactile tasks, as for example by Debow-
ska et al. (2013); van Ede et al. (2014), and Sathian et al. (2013).
More specifically, studies focusing on macrospatial tasks, such
as orientation and shape discrimination, showed activation within
the right PoCS and the neighboring intraparietal sulcus, irrespect-
ive of the hand used for tactile exploration (Kitada et al. 2006; Stilla
and Sathian 2008), the same is true for studies using microspatial
discrimination tasks (Sathian et al. 2013). These studies, together
with our results, indicate a right-hemispheric contribution to as-
pects of tactile spatial coding. Interestingly, there was neither an
effect of perceived roughness nor of task instructions (roughness
vs. density estimation) in the univariate data analysis.

In contrast to the univariate approach, the multivariate
analysis of the same data revealed effects of task instructions,
perceived spatial density and roughness, indicating that multi-
variate techniques are indeed more sensitive to subtle differ-
ences in the activation patterns of haptic tasks. This increased
sensitivity might also have the unwanted side effect of capturing
subtle differences which are not necessarily of interest, for ex-
ample, effects of different haptic exploration strategies or motion
artifacts. Precautionary measures were taken to minimize these
problems. The exact haptic exploration movement was prede-
fined and all participants were exhaustively trained in the
mock scanner before entering the fMRI experiment. Furthermore,
the same experimenter was responsible for stimulus presenta-
tion in all subjects and indicated with a separate button box,
whethera participant missed a trial or the exploration movement
was not correctly timed or incorrect. These trials were removed
from data analysis. In addition, we used the motion parameters
and task regressors from the univariate analysis to check for cor-
relations of the model with motion effects (see Supplementary
Fig. 4). The results were unsuspicious and indicated that motion
was not a significant contributor to the multivariate results in
this study.

All ROIs showed significant above-chance classification of the
estimation tasks across subjects, whereas the same classification
was not significant in a control region, thatis, Heschl’s gyrus, in-
dicating the validity of the results for the selected ROIs. Notably,
there was neither a difference in the employed texture set nor in
the experimental design of both rating tasks; the only difference
was the task instruction for the subjects. Hence, early sensory re-
gions including the PoCG/CS and the pOCC as well as higher-
order areas, such as the lateral PFC, the Oplns cortex, the PPC,
and the VTC, convey information indicative of the performed
haptic texture task. The effect of task in the somatosensory cor-
tex was not restricted to but included the cortical input regions
for cutaneous information (Kaas 1993), that is, BA3b constituting
the SI and BA1 as a projection site of BA3b. Furthermore, the in-
volvement of OP1/4 and OP3in task classification supports earlier
findings, indicating an involvement of these somatosensory par-
ietal opercular fields in texture perception (Stilla and Sathian
2008; Sathian et al. 2011). Interestingly, significant classification
effects were not restricted to somatosensory regions and the pre-
frontal cortex, which would be expected from a purely tactile
task. Classical visual regions in the posterior occipital cortex
and the VTC showed a similar pattern for task classification.
This is consistent with the current body of haptic literature,
which shows an involvement of visual cortex regions in tactile
tasks (Sathian et al. 1997, 2011; Amedi et al. 2001; Stoesz et al.
2003; Merabet et al. 2007; Peltier et al. 2007; Deshpande et al.
2008; Podrebarac et al. 2014).

Based on the task classification, we cannot infer which of
these regions are involved in spatial density estimation of the
dot pattern textures and which contribute to roughness percep-
tion. To that end we tested whether some of these regions also
hold information that discriminates texture trials that were per-
ceived by the participants as either rough/dense or smooth/
sparse. In agreement with earlier studies, we found significant
above-chance classification of the spatial density classes in
early somatosensory (Zangaladze et al. 1999; Merabet et al.
2007) and visual cortex (Merabet et al. 2004), but also in 2 higher
parietal regions, namely the left superior parietal lobule and the
angular gyrus.

Interestingly though, SVM classification of physical wide and
close interdot spacing in the No-Estimation runs did not exceed
the empirical chance level in the same regions. At first sight,
this is somewhat surprising considering that texture categoriza-
tion according to physical interdot spacing was identical to cat-
egorization according to perceived spatial density, as indicated
by the simple negative linear relationship of the physical and
perceptual texture characteristic, observed in the behavioral re-
sults. It is possible that a classification above-chance level
could have been reached by increasing the power, that is, the
number of stimulus repetitions. The lack of significant findings
from the No-Estimation runs cannot be explained by different
sensory input, as we can be certain that all participants reliably
performed identical haptic exploration of the stimuli in all
runs. Hence, a more likely cause of the lack of significant findings
is the absence of an explicit judgment task, which might have re-
sulted in a redirection of the participants’ attention elsewhere. In
the same vein, the significant density classifications in the Rating
runs could be explained by the enhanced attention to the physic-
al stimulus space, induced by the rating instruction, which might
have promoted the cortical processing of small differences in the
tactile texture set. Such top-down influences on tactile stimulus
processing have been observed as early as in the S1 (Sterr et al.
2007; van Ede et al. 2014) and are also well known for visual pro-
cessing (Treue 2001; Andersen et al. 2008). Furthermore, the in-
volvement of the posterior occipital cortex in a mere tactile task
is in agreement with the idea that primary sensory regions share
similar representations, an idea suggested by Merabet et al. (2004)
and further elaborated by Eck, Kaas, Goebel (2013). In summary,
the results of the perceived spatial density and physical spacing
SVM classification indicate that differences in the physical
stimulus space of tactile textures are represented in early sensory
regions of the visual and the somatosensory cortex as well as in
higher parietal areas, but that attention to the perceptual texture
dimension is necessary to reveal this information.

In contrast to perceived spatial density, perceived roughness
information appears to be conveyed predominantly by higher-
order cortical areas as indicated by classifications above the em-
pirical chance level in the operculo-insular cortex and the VTC.
The parietal opercular regions included OP1, the homolog of SII
(Eickhoff, Amunts, et al. 2006), and OP3, both of which have pre-
viously been implicated in roughness perception (Kitada et al.
2005; Burton et al. 2008; Simdes-Franklin et al. 2011). The signifi-
cant findings in higher-order regions could be interpreted as sup-
port of our hypothesis that perceived roughness requires an
integration of multiple factors likely to be represented in associ-
ation cortex. The lack of significant findings in early sensory
cortices could point to an insufficient sensitivity of our experi-
mental design to reveal roughness-related signal changes in
these regions, as it was previously shown that neuronal activity
in monkey S1 codes for texture differences that represented dif-
ferences in perceived roughness (Sinclair and Burton 1991; Jiang
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et al. 1997). However, these experiments employed stimuli in
which either the groove width of linear gratings or the interdot
spacing of dot patterns fell in a range where they are expected
to be approximately linearly related to perceived roughness
(Meftah et al. 2000; Lawrence et al. 2007). Hence, the confounded
spatial and roughness characteristics of the stimuli render it al-
most impossible to answer the question which texture property
is eventually coded by the neuronal cells in S1. Nevertheless,
this does not exclude the possibility that roughness differences
are indeed represented in the primary sensory cortex, but that
our experimental design was not sensitive enough to pick up
these differences.

In addition to the significant classification of perceived rough-
ness categories in the operculo-insular cortex, the same was
found for the VTC. A direct comparison of the roughness and spa-
tial density classifier did not reveal a better performance for
roughness differences. However, the spatial density classifier
did not exceed empirical chance level in the VTC. Moreover, clas-
sification of roughness trials based on spatial density ratings
yielded chance classification. Although not completely conclu-
sive, this result provides a first indication that the VTC contains
information indicative of tactile texture roughness. The most dis-
criminative voxels in the CoS for high and low roughness classi-
fication were close to fMRI activation peaks previously reported
for visual attention to surface textures (Cant and Goodale 2007;
Cant and Xu 2012). This would be expected as the VTC region in
our study was defined based on a visual texture localizer. How-
ever, a recent study showed that a similar region is insensitive
to low-level changes such as in density or spacing, but responds
to changes in high-level information, such as differences in the
ratio of 2 types of objects in an ensemble (Cant and Xu 2014).
This result is in accordance with the view that complex high-
level perceptual information is represented in the VTC, while
image-based low-level properties are processed in early visual re-
gions (Hiramatsu et al. 2011; Goda et al. 2014). Interestingly, in our
study, we found indications that the VTC conveys perceptual in-
formation based on tactile input. Specifically, it contained informa-
tion on perceived roughness, a more complex texture dimension
when compared with perceived spatial density. A general contribu-
tion of the occipital and temporal cortex to a tactile roughness cat-
egorization task was also reported by Simoes-Franklin et al. (2011).

Analogous to the primary somatosensory and visual cortex
sharing a representation of low-level perceptual texture dimen-
sions such as spatial density, the operculo-insular cortex, and
VTC could share a representation of complex or high-level tex-
ture dimensions such as perceived roughness. Both the visual
and the somatosensory components of the network might be in-
voked either visually or haptically via learned associations of
visuo-tactile texture perception.

We cannot be certain whether our results can be generalized
to other kinds of textures. Sutu et al. (2013), for example, reported
a linear increase in perceived roughness with increasing interdot
spacing, using very similar dot patterns but with slightly higher
dots. The authors suggested that a simple intensive code (mean
discharge rate of primary mechanoreceptive afferents) might ex-
plain these roughness-related changes. Furthermore, they ar-
gued that this interpretation is supported by the finding that
neuronal discharge rates in monkey S1 increase over a similar
range as roughness perception did in their experiment (Jiang
et al. 1997). Although this is an interesting conjecture, to our
knowledge, no neuroimaging study has been published so far re-
porting roughness-related changes in the human S1. In contrast
to the higher dot pattern textures, Sutu et al. (2013) found a com-
parable inverted U-shape function as we did when testing
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roughness perception on dot pattern stimuli with lower dots.
They interpreted this finding as an indication that subjects
judged texture roughness for the ascending limb of the inverted
U function, but some other texture quality for the descending
limb. However, the consistency of roughness-related activation
changes in the human operculo-insular cortex in our and other
studies using different textures, that is, sandpaper and linear
gratings (Kitada et al. 2005; Simoes-Franklin et al. 2011), leads
us to believe that our subjects indeed judged roughness, all the
more because these studies also found no roughness-related
changes in the S1. This consistency with other studies using dif-
ferent texture sets corroborates our findings of roughness-related
changes in the operculo-insular cortex and the VTC.

In summary, we found that both early and higher-order vis-
ual, somatosensory, and prefrontal regions conveyed informa-
tion indicative of the tactile task performed on an identical set
of textures, that is, judging spatial density versus roughness.
However, while different levels of perceived spatial density
could already be decoded from fMRI activation patterns in early
sensory but also in higher somatosensory association cortices,
information on the perceived roughness level was solely avail-
able in higher-order regions of the ventral visual cortex and the
operculo-insular cortex. These cortical differences appear to cor-
roborate the psychophysical findings, implicating that perceived
spatial density represents a simple mapping of the physical
stimulus space, whereas perceived roughness is influenced by
multiple factors. These results confirm and also extend earlier re-
ports by showing that the visual cortex is not only involved in
judging spatial characteristics of tactile textures, but also contri-
butes to tactile roughness perception.

A possible interpretation of the findings includes a shared re-
presentation of perceived texture characteristics in somatosen-
sory and visual cortices, with spatial density relying on early
sensory regions and roughness on higher-order sensory cortices,
which might be accessible via both sensory modalities through
learned associations in visuo-tactile texture perception.

Supplementary Material

Supplementary material can be found at: http:/www.cercor.
oxfordjournals.org/.
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