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Early diagnosis of dementia is critical for assessing disease progression and

potential treatment. State-or-the-art machine learning techniques have been increasingly

employed to take on this diagnostic task. In this study, we employed Generalized

Matrix Learning Vector Quantization (GMLVQ) classifiers to discriminate patients with Mild

Cognitive Impairment (MCI) from healthy controls based on their cognitive skills. Further,

we adopted a “Learning with privileged information” approach to combine cognitive

and fMRI data for the classification task. The resulting classifier operates solely on the

cognitive data while it incorporates the fMRI data as privileged information (PI) during

training. This novel classifier is of practical use as the collection of brain imaging data

is not always possible with patients and older participants. MCI patients and healthy

age-matched controls were trained to extract structure from temporal sequences. We

ask whether machine learning classifiers can be used to discriminate patients from

controls and whether differences between these groups relate to individual cognitive

profiles. To this end, we tested participants in four cognitive tasks: working memory,

cognitive inhibition, divided attention, and selective attention. We also collected fMRI data

before and after training on a probabilistic sequence learning task and extracted fMRI

responses and connectivity as features for machine learning classifiers. Our results show

that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the

cognitive data. In addition, we found that for the baseline classifier, divided attention is

the only relevant cognitive feature. When PI was incorporated, divided attention remained

the most relevant feature while cognitive inhibition became also relevant for the task.

Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1) when overall

fMRI signal is used as inputs to the classifier, the post-training session is most relevant;

and (2) when the graph feature reflecting underlying spatiotemporal fMRI pattern is used,

the pre-training session is most relevant. Taken together these results suggest that brain

connectivity before training and overall fMRI signal after training are both diagnostic of

cognitive skills in MCI.

Keywords: discriminative feature extraction, supervised metric learning, learning with privileged information,

learning vector quantization, linear discriminant analysis, fMRI graph feature
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1. INTRODUCTION

Alzheimer’s Disease (AD) is the most common
neurodegenerative disease in ageing. It is characterized by
the progressive impairment of neurons and their connections.
Mild Cognitive Impairment (MCI) is the prodromal stage
of AD. Thus, accurate diagnosis of MCI (i.e., the early stage
of AD) is very important for timely treatment and delay
of disease progression. As MCI results in detectable loss
of cognitive function, cognitive test scores have been used
diagnostically (Albert et al., 2010). Further, MCI is known to
cause changes in brain activation patterns as well as in brain
connectivity. Therefore, fMRI has been increasingly used as a
diagnostic tool of MCI patients (Challis et al., 2015; Chen et al.,
2015). In machine learning terms, diagnosis of MCI patients
can be formulated as a classification task to discriminate MCI
patients from healthy controls. In this paper, we present a novel
classifier using cognitive test scores as inputs to the classifier and
using fMRI data as privileged information.

In the recent literature on the classification tasks related to
AD, we observe a clear trend: state-of-the-art machine learning
techniques have been increasingly employed to take on new
tasks. For example, a classification task should also provide
insights into the relevance of the input features used for the
task. In Challis et al. (2015), Gaussian process classifiers have
been employed for the discrimination between healthy controls
and MCI patients as well as the discrimination between MCI
and AD patients. More importantly, Gaussian process classifiers
have been used to automatically determine the relevant input
features when training the classifier. In Chen et al. (2015), a
challenging classification task was tested, that is, discrimination
of two subgroups of MCI patients. Patients in one subgroup
will likely progress to AD but those in another group will not
convert to AD. In the literature, this classification task is referred
to as MCI-AD conversion prediction. This work incorporates
data from both healthy subjects and AD patients for classification
of MCI patients using the transfer learning framework.
Transfer learning is a (relatively) new development in machine
learning that aims to boost the performance of a classifier
operating in one domain (e.g., MCI patients) by incorporating
data from other domains (e.g., healthy subjects and AD
patients).

Here we ask whether MCI patients differ in their cognitive
skills from controls. Our task is to classify cognitive profiles
in patients vs. controls based on cognitive scores and fMRI
data. Furthermore, we address the case when fMRI data are
not available for classifying a new subject. To utilize the fMRI
data for the task, we train our classifier on participants for
whom both cognitive and fMRI data are available. After that,
the trained classifier will classify a new subject solely based
on his/er cognitive test scores. This case is of relevance in
practice because (1) When compared to cognitive data, the
collection of neuroimaging data is much more time-consuming
and expensive; (2) Many older individuals (e.g., those with a
cardiac pacemaker) may not be safe for imaging such as fMRI
scanning. On the other hand, neuroimaging data have more
diagnostic power than cognitive data and thus should be used

when available. In our work, the classifier is trained by adopting
a “metric learning” based approach to Learning with Privileged
Information (LPI) (Fouad, 2013). As transfer learning, LPI is
also a new development in machine learning. In our context,
cognitive data are the inputs to the classifier. In contrast, fMRI
data act as privileged information that is used only for training
the classifier (along with the cognitive data). As most classifiers
operate based on a distance/similarity measure between pairs of
input vectors, the metric tensor used to compute such distance
is therefore crucial for the classification task. In the model of
Fouad (2013), the privileged information (in our case fMRI
data) is used to modify the metric tensor (and hence the
metric) in the original space (in our case cognitive test scores)
to improve the classification accuracy in the original space.
Intuitively, if cognitive test scores of two participants appear
“similar," but their fMRI data shows different characteristics, the
distance between the two cognitive test score vectors should be
increased (and vice-versa). As the scale parameter in Challis et al.
(2015), the diagonal elements of the discriminative metric tensor
can be used to automatically determine the relevant cognitive
features.

2. MATERIALS

The cognitive and fMRI data used in this study were collected
in the context of two behavioral and fMRI studies (Baker et al.,
2015; Luft et al., 2015, 2016) in which the participants were asked
to predict the orientation of a test stimulus following exposure
to structured sequence of leftwards and rightwards oriented
gratings, and no feedback were given. Both studies aimed to (1)
test whether training on structured temporal sequences improves
the ability to predict upcoming sensory events and (2) identify
brain regions that support the ability of using implicit knowledge
about the past for predicting future. In particular, Baker et al.
(2015) and Luft et al. (2015) investigated how MCI patients
differ from healthy controls in terms of (1) their ability to learn
predictive structures as well as (2) their learning-dependent brain
activation patterns. The diagnosis of MCI patients was made by
an experienced consultant psychiatrist (PB) using the National
Institute of Ageing and Alzheimer’s association working group
criteria (Albert et al., 2010).

In both studies, participants took part in two fMRI scans
before and after behavioral training (i.e., pre- and post-training
session) during which they completed 5–8 independent runs of
the prediction task in each scanning session. Each run comprised
5 blocks of structured and 5 blocks of random sequences (3
trials per block) presented in a random counterbalanced order.
In each trial, the participant was presented with a sequence of
eight left and rightward oriented gratings (in rapid succession,
250ms + fixation 200ms) followed by a repeat of the same
sequence. The participant was instructed to pay attention to the
sequence and respond whether the test grating (randomly chosen
grating during the second repeat) was correct or incorrect given
that presented sequence. Even though the participants could not
tell what exactly was the sequence structure, they learn how to
correctly predict whether the grating has the correct orientation
given the presented sequence. In random sequence trials, the
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grating’s orientations were randomly generated so the participant
could not correctly predict them.

The fMRI data used in this study were acquired in a 3T
Achieva Philips scanner at the Birmingham University Imaging
Center using a 30 two-channel head coil. Anatomical images
were obtained using a sagittal three dimensional T1-weighted
sequence with 175 slices (voxel size = 1 × 1 × 1 mm3) for
localization and visualization of functional data. Functional data
were acquired using a T2-weighted EPI sequence with 32 slices
(whole-brain coverage; TR = 2 s; TE = 35ms; flip angle = 73;
voxel size = 2.5× 2.5× 4mm3).

In Luft et al. (2016), regions-of-interest (ROIs) were identified
by applying whole-brain general linear model analysis with a
voxel-wise mixed-design three-way ANOVA, that is,

session (pre- vs. post-training)× sequence (structured vs.

random)× group (MCI vs. controls).

Statistical maps were cluster threshold corrected (p< 0.05). Table
1 in Luft et al. (2016) listed all brain regions showing significant
interaction between session, sequence, and group. For the study
presented in this paper, we combined two ROIs in the frontal
region (Superior Frontal Gyrus, SFG, on the right hemisphere
andMedial Frontal Gyrus, MFG, on the left hemisphere) and two
ROIs in the cerebellar region (Cerebellar Lingual and Cullmen
ROIs in both hemispheres). This resulted in a frontal ROI of size
126 and a cerebellar ROI of size 82. Also, a subcortical ROI (that
is, the parahippocampal gyrus ROI of size 32) was selected for the
study.

All 60 participants involved in this study had undergone
cognitive skill tests (including working memory, cognitive
inhibition and attentional skills). These tests provide four
quantitative measures of different cognitive skills for each
participant:

1. In the working memory task, a number of colored dots are
on display for half second. Then, they disappear for 1 s
and reappear with some dots having changed their color. A
participant is asked to judge whether a given dot has changed
its color or not. The participant’s working memory skill can be
measured by the maximal number of colored dots on display
for achieving a 70.7% test performance (denoted by ndots);

2. To quantify a participant’s attention skill, the following
cognitive task was performed: two objects are on display, one
located at the display center, another located on the periphery
of the display. The peripheral object can only take one of
eight equally distributed radial directions (with respect to the
display center). The central object could be either car or truck
silhouette, whereas the peripheral object must always be the
truck silhouette. The participant was asked to identify the type
of the central object (car vs. truck) and the location of the
peripheral stimulus before the display was masked by white
visual noise. This skill is measured by theminimal display time
required for the participant to achieve 70% task performance.
Depending on whether or not there are distractors on the
display, the skill of divided or selective attention is measured
(denoted by td

disp
and ts

disp
, respectively);

3. The skill of inhibition is measured in a stop-signal test. A
participant is first cued to perform a motor task. This is
followed by a tone with some time delay, which signals task
abortion. The quantity measuring the inhibition skill, tdelay, is
given by the minimum delay time for achieving a 70.7% test
performance.

Sixty participants are involved in this study. Thirty-four of them
have both cognitive and fMRI data. Among these participants,
nine MCI patients and nine healthy controls come from the
cohort reported in Luft et al. (2015). The remaining 16 healthy
controls come from the cohort reported in Luft et al. (2016).
The size of that cohort is 20. Four of them are not included in
this study because their cognitive data were missing. Note that
for these 34 subjects having both cognitive and neuroimaging
data for training of classifiers, MCI patients and healthy controls
were age matched: mean age of MCI patients was 68.9 , and
mean age of controls was 68.3. The remaining 26 participants
have cognitive data only. Among them, four MCI patients and
five healthy controls come from Baker et al. (2015) and Luft
et al. (2015). The remaining 17 participants are from unpublished
studies but they participated exactly the same experiments as
other participants. Note that all neuroimaging data used in this
study are reported either in Luft et al. (2015) or in Luft et al.
(2016).

3. METHODS

3.1. Generation of fMRI Features
3.1.1. fMRI Signal Features
For each ROI and each (pre- and post-training) session,
we calculated percent signal change (PSC) by subtracting
fMRI responses to random sequences from fMRI response to
structured sequences and dividing by averaged fMRI response
to both stimulus sequences. Let nr and ns denote the number of
volumes scanned during the trials with random and structured
sequences, respectively. For a ROI of size V , its PSC value is
computed as follows:

PSC =
1

V

V
∑

v=1

1
ns

∑

i∈Is

yvi −
1
nr

∑

j∈Ir

yvj

1
ns

∑

i∈Is

yvi +
1
nr

∑

j∈Ir

yvj
(1)

where i and j denote volume index, v voxel index, Is = {i1, ..., ins}
the collection of “structured” volumes and Ir = {j1, ..., jns}
the collection of “random” volumes. The above definition
implies that PSC measures scaled fMRI-response to temporally
structured stimuli and it is an overall measure averaged over both
volumes and voxels.

3.1.2. fMRI Graph Features

3.1.2.1. Graph matrix
Graph structure characterizes the connectivity between nodes of
a graph. In this study, the graph structure of a single ROI is
represented by so-called graph matrix G of size V × V where V
denotes the ROI size. The value of Gij measures the functional
connectivity between voxel i and voxel j, and is computed as
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(linear) cross-correlation between two fMRI time series of length
n on the voxel pair (denoted by yi = (yi1, ..., yin)

⊺ and yj =

(yj1, ..., yjn)
⊺, respectively), that is,

Gij =
1

n
·

n∑

k=1

(yik − µi) · (yjk − µj)

σi · σj
(2)

where µ and σ stand for the mean and standard deviation of
individual fMRI time series. In the case of i = j, we obtain
Gij = 1. Note that Gij is a connectivity measure independent of
the activation intensity on each of two voxels.

3.1.2.2. Discriminative feature extraction
Often, a classifier’s inputs are not those raw data to be
classified but the features extracted from the raw data. This can
significantly reduce the input dimension, which tackles both
“curse of dimensionality” and the small sample-size problem.
Therefore, a good choice of feature vector plays an important
role in classification. This is the motivation for extraction of
discriminative features. The discriminative features are suitable
because they are extracted in a task-driven and supervised
manner. Linear Discriminant Analysis (LDA) is a machine
learning technique for discriminative feature extraction. The
assumption of LDA is that the feature vectors of each class are
Gaussian-distributed. In LDA, high-dimensional feature vectors
are projected into a lower-dimensional space and the projection
matrix is optimized so that the classes are maximally separated
in the projection space. To this end, the empirical covariance
matrices need to be estimated using the feature vectors from
individual classes. If the number of feature vectors is small and
their dimension is high, the empirical estimates of covariance
matrices are not accurate. Thus, LDA suffers from the same
problem as classifiers do. So-called 2D-LDA has been proposed
by Sato et al. (2008) for the cases where data items are matrices
(e.g., graph matrices in this study) and a direct application of
standard LDA with vectorized matrices could fail due to the
above-mentioned problem. In the following, we summarize both
standard LDA and 2D-LDA with the dimension of the projection
space fixed to one.

For standard LDA, assume that we have N d-dimensional
feature vectors, {xn : n = 1, ...,N}, for training in which N1

feature vectors are from Class 1 and N2 = N − N1 from Class
2. Denote these two subsets by C1 and C2, respectively. The mean
vectors of Class 1 and Class 2 are given by m1 = 1

N1

∑

xn∈C1

xn

and m2 = 1
N2

∑

xn∈C2

xn, respectively. Define the between-class

covariance matrix SB and the total within-class covariance matrix
SW as

SB = (m2 −m1)(m2 −m1)
⊺ (3)

and

SW =
∑

xn∈C1

(xn −m1)(xn −m1)
⊺ +

∑

xn∈C2

(xn −m2)(xn −m2)
⊺.

(4)

The projection matrix w of size d×1 is optimized by maximizing
the Fisher criterion defined by

J(w) =
w⊺SBw

w⊺SWw
=

DB

DW
. (5)

DB and DW are referred to as the between-class distance and the
total within-class distance. Denote the optimized w by wopt and
the extracted features are given as {fn = w

⊺

optxn : n = 1, ...,N}.
For 2D-LDA, assume that we have N graph matrices of size

d× d, {Xn : n = 1, ...,N}, for training in which N1 feature vectors
are from Class 1 and N2 = N − N1 from Class 2. Denote these
two subsets by C1 and C2, respectively. For Class 1 and Class
2, their mean matrices are given by M1 = 1

N1

∑

Xn∈C1

Xn and

M2 = 1
N2

∑

Xn∈C2

Xn. In contrast to standard LDA, we need two

(left and right) projection matrices (or vectors), denoted by a and
b of size d×1 projecting thematrices into real numbers. Similarly,
the between-class distance and the total within-class distance are
defined as

DB = a⊺(M2 −M1)bb
⊺(M2 −M1)a (6)

= b⊺(M2 −M1)aa
⊺(M2 −M1)b (7)

and

DW =
∑

Xn∈C1

a⊺(Xn −M1)bb
⊺(Xn −M1)a

+
∑

Xn∈C2

a⊺(Xn −M2)bb
⊺(Xn −M2)a (8)

=
∑

Xn∈C1

b⊺(Xn −M1)aa
⊺(Xn −M1)b

+
∑

Xn∈C2

b(Xn −M2)aa
⊺(Xn −M2)b. (9)

Note that M1, M2, and Xn, n = 1, 2, ..., N, are all symmetric
matrix. The projection vectors a and b are optimized by
maximizing J(a, b) = DB/DW iteratively. At each iteration, we
optimize a or b while keeping b or a fixed. This procedure is
repeated until J has converged. Denote the optimized a and b by
aopt and bopt. The extracted features are given as {fn = a

⊺

optXnbopt :

n = 1, ...,N}.
Note that the number of free parameters to be optimized is d2

for standard LDA operating on vectorized graph matrices and 2d
for 2D-LDA operating on graph matrices directly.

3.1.2.3. Small sample-size problem
The main idea of this study is using costly but informative
fMRI measurements as valuable privileged information in a
classification task operating on cognitive features only. To do
so the complex spatial-temporal structure in fMRI signals will
need to be transformed into a set of indexes (scalars) that best
discriminate between the classes.

In our approach we first capture the spatial-temporal structure
of fMRI signals within an ROI as a cross-correlation graph. An
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ROI of V voxels will be represented as a full undirected graph
with n nodes (one for each voxel) and the edge between nodes
i and j is weighted by the value of the correlation coefficient
between fMRI signals in the two voxels. Each such graph will in
turn be represented by an V × V symmetric matrix X collecting
the edge weights.

In this study we have two classes of N subjects - Np patients
and Nc healthy controls (that is N = Np + Nc). The graph
matrices of patients and controls are collected in matrix sets Cp

and Cc. Given the two sets of matrices, we propose to extract
the discriminating feature f through a quadratic form applied to
graph matrix X: f = a⊺Xb. Both a and b are a V-dimensional
vectors determined via an optimization problem expressing the
need to maximally separate the two classes, while keeping the
within-class variability minimal. To find the projection vectors
a and b we used 2D-LDA (Ye et al., 2004).

For an ROI with V voxels, the discriminative features a and
b are V-dimensional vectors, meaning that when determining a

and b we have 2V free parameters. As the number of subjects
N is smaller than 2V , in order to avoid overfitting, the size
of the graph representing spatial-temporal structure of cortical
activations in that ROI needs to be reduced. Note that in our
original formulation, each element ai of a corresponds to a
particular voxel i whose spatial position is ri. It is natural to
expect that spatially close voxels will have similar activation
patterns. We therefore introduce a set of K spatially smoothing
Gaussian kernelsN (r;µk,6k), k = 1, 2, ...,K, in the voxel space,
positioned at µk, shape determined by the covariance matrix 6k.
This leads to a decomposition:

ai =

K
∑

k=1

ãkN (ri;µk,6k) (10)

The values of the smoothing kernels k at each voxel i can be
collected in the smoothing matrix.

Pi,k = N (ri;µk,6k) (11)

The feature vectors a and b can then be written as a = Pã and
b = Pb̃, respectively. We have:

f = a⊺Xb = ã⊺P⊺XPb̃ (12)

The V × V graph matrix X is thus reduced to the K × K matrix

X̃ = PXP⊺ (13)

and

f = ã⊺X̃b̃ (14)

For a given number K of Gaussian kernels, their position is
determined by k-means clustering in the voxel space and the
covariance matrices of each cluster were estimated from the voxel
positions within the corresponding clusters.

The number of smoothing kernels K in the three ROIs with
32, 82, and 126 voxels was set to 3, 4, and 8, respectively. The

largest ROI is contained in both hemispheres. Hence, the sub-
ROIs within each hemisphere were clustered independently into
4 clusters. Spatial smoothing with Gaussian kernels described
above expresses the assumption that nearby voxels should have
similar functionality. We refer to this approach as Spatial
Grouping (SG) and to the resulting feature as SGF. An alternative
approach would be to identify groups of voxels that are not
only spatially close but also exhibit similarity in the activation
time series (as quantified through cross-correlation) (Carpineto
and Romano, 2012). We thus obtain N functional clusterings
of the voxel space, one for each subject. These groupings at the
subject level are then merged into a single population based
functional clustering of voxels through Consensus Clustering
(Carpineto and Romano, 2012). Given the resulting K voxel
clusters, we calculated their means µk and covariance matrices
6k, thus obtaining a set of K "functionally informed" smoothing
Gaussian kernels N (ri;µk,6k). The reduced graph matrix X̃ is
then calculated as in Equatins (11) and (13). We refer to such
functional voxel clustering as Functional grouping (FG)and to
the resulting feature as FGF.

3.1.3. Feature Generation Pipeline
Figure 1 illustrates the flow of fMRI feature generation. We
obtain three fMRI features (PSC, FGF, SGF) independently from
fMRI data Y ∈ R

V×T . Recall that V is number of voxels and T is
the number of volumes. Feature PSC is computed directly from
Y. To compute other two features, we first transform Y to a graph
matrix X of size V × V and reduce X to X̃ of size K × K with
(K < V) either through spatial projection or through functional
clustering. Finally, we extract SGF from X̃ obtained by spatial
projection and FGP from X̃ obtained by functional clustering.

3.2. Classification Tools
3.2.1. Generalized Matrix Learning Vector

Quantization (GMLVQ)
The classification algorithms of Learning Vector Quantization
(LVQ) (Arbib, 2003) are supervised learning paradigms which
work iteratively to modify the quantization prototypes to find
the boundaries of the class. LVQ classifiers are represented by
a set of vectors, so-called prototypes, embodying classes in the
input space, and a distance metric on the input data. During
training, prototypes are adapted in an iterative manner to define
class borders. For each training point, the algorithm determines
two closest prototypes, one with the same class as the training
point, and another with a different class. The position of the two
closet prototypes are then updated, where same class prototype
is moved closer to the data point, while different class prototype
is pushed away from the data point. During testing, an unknown
point is assigned to the class represented by the closest prototype
with respect to the given distance.

The LVQ scheme, which is originally introduced by Kohonen
et al. (2001), applies Hebbian online learning in order to adapt
prototype with training data. Subsequent, researchers proposed
a number of modifications to the basic learning scheme. Such
variations utilize an explicit cost functionality, whereas others
allow for incorporating adaptive distance measures (Schneider
et al., 2009; Schneider, 2010).
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FIGURE 1 | Illustration of fMRI feature generation pipeline: from BOLD signal data Y to three fMRI features (PSC, FGF, and SGF). FG and SG are the

reduced version of graph matrix G via functional grouping and spatial grouping (respectively). Note that FGF and SGF are both discriminative features extracted from

FG and SG in a supervised manner using 2D-LDA (that is, Linear Discriminant Analysis operating on matrices).

Given training data (xi, yi) ∈ R
m×{1, · · · ,K}, i = 1, 2, · · · , n,

where m denotes the dimensionality of data and K signifies the
number of different classes. Typically, a LVQnetwork will include
L prototypes wq ∈ R

m, q = 1, 2, 3, ..., L, which is characterized
according to their location available in the input space and their
class c(wq) ∈ {1, ...,K}. At least one prototype in each class
needs to be present. The overall number of prototypes is a
model hyper-parameter that is to be optimized. The (squared)
Euclidean distance d(x,w) = (x − w)⊺(x − w) within R

m

quantifies the distance between the input vectors and prototypes.
The classification performed using the winner-takes all scheme:
the data point xi ∈ R

m belongs to the label c(wj) of the
prototype wj if and only if with d(x,wj) < d(x,wq),∀j 6=

q. For every prototype wj with class c(wj) a receptive field is
defined within the input space. According to the LVQ model,
points located in the respective field 1 will be assigned to the
class c(wj).

The aim of learning is to adapt prototypes automatically in
such a way that the gap between data points of class c ∈ {1, ...,K}
and the corresponding prototypes with label c (the one that the
data are belonging to) will be reduced to a minimum distance.
During the stage of training for each data point xi with class
label c(xi), the most proximal prototype with the same label is
rewarded by pushing closer toward the training input; the most
closest prototype with a different label will be disallowed by
moving pattern xi away.

The Generalized Matrix LVQ (GMLVQ ) is a recent extension
of the LVQ that employs a full matrix tensor for a better measure
of distance between two feature vectors. The new distance
measure not only is capable of scaling individual features but
also accounts for pairwise correlations between the features.

1The set of points in the input space is defined by the receptive field of prototype

w, where this prototype is picked as their winner.

Assuming 3 ∈ R
m×m is a positive definite matrix, 3 ≻ 0, the

generalized form of the squared Euclidean distance is defined as

d3(xi,w) = (xi − w)⊺3(xi − w) (15)

The positive definiteness of 3 is guaranteed by imposing 3 =

�⊺�, where � ∈ R
m×m is a full-rank matrix. Furthermore, to

prevent the degeneration of the algorithm, 3 is trace normalized
after each learning step (i.e.,

∑

i 3ii = 1) so that the summation
of eigenvalues is kept fixed in the learning process. The model
is trained in an online-learning fashion and the steepest descent
method is employed to minimize the cost function given as:

fGMLVQ =

n
∑

i=1

φ(µ3(xi)) (16)

with

µ3(xi) =
d3(xi,w

+)− d3(xi,w
−)

d3(xi,w+)+ d3(xi,w−)
, (17)

where φ is a monotonic function (the identity function φ(l) =

l is a common choice). The main advantage of the GMLVQ
framework is that (unlike LVQ, Schneider et al., 2009; Schneider,
2010), it allows us to naturally incorporate privileged information
through metric learning.

3.2.2. Privileged Information (PI) Guided GMLVQ
This paper employs the Information Theoretic Metric Learning
(ITML) approach (Davis et al., 2007) in order to incorporate
privileged information into the learning phase of the GMLVQ.

Given a training dataset, we have one space where the original
training data live and another space where the privileged training
data live. They are denoted by X and X

∗, respectively, and
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their corresponding global metric tensors are denoted by 3 and
3∗. The distances between the privileged training points in X

∗

are first computed using 3∗ and then are sorted in ascending
order. Based on the closeness information in X

∗, the original
training points are tagged in a categorical manner (similar and
dis-similar). After that, the ITML approach is adopted to impose
similarity constraints in the original space. The main goal is to
learn a new metric in the original space (denoted by 3new) so
that under the new metric, the distance between two original
training points is small if their counterparts in the privileged
space are similar (close), and vice versa. Implementation of the
above concept is described in the following.

The training dataset is given as {(xi, x
∗
i , yi) : xi ∈ X, x∗i ∈

X
∗, i = 1, 2, ...,N}. Recall that y represents class label. For each

pair of two training examples, 1 ≤ i < j ≤ N, we compute three
different squared Mahalanobis distances as follows

d3(xi, xj) = (xi − xj)
⊺3(xi − xj), xi, xj ∈ X (18)

d3∗ (x∗i , x
∗
j ) = (x∗i − x∗j )

⊺3∗(x∗i − x∗j ), x
∗
i , x

∗
j ∈ X

∗ (19)

d3new (xi, xj) = (xi − xj)
⊺3new(xi − xj), xi, xj ∈ X (20)

Note that 3 and 3∗ are both given whereas 3new needs to
be learned. The metric tensor 3new should be optimized in a
supervisedmanner so that d3new (xi, xj) will be shrunk if x

∗
i and x

∗
j

are similar. Otherwise, d3new (xi, xj) will be enlarged. To this end,
we form two sets of pairs of the training data points in the original
spaceX: S+ is a set of similar pairs and S− a set of dissimilar pairs.
These two sets are formed using the proximity information in the
privileged space X

∗ as follows:

1. If d3∗ (x∗i , x
∗
j ) ≤ l∗and yi = yj (same class label), then

(xi, xj) ∈ S+;
2. If d3∗ (x∗i , x

∗
j ) ≥ u∗and yi 6= yj (different class label), then

(xi, xj) ∈ S−.

Here, l∗ and u∗ represent the upper and lower bound for the
distances of similar and dissimilar pairs, respectively, in the
privileged space. The value of l∗ is chosen as the upper bound
for the < a∗ percentile of all d3∗ (x∗i , x

∗
j ) values, 1 ≤ i < j ≤ N.

Similarly, the value of u∗ is chosen as the lower bound for the
> 1−b∗ percentile of all d3∗ (x∗i , x

∗
j ) values, 1 ≤ i < j ≤ N. At the

same time, the choice of l∗ and u∗ is subject to the constraint u∗ >

l∗. Also, a∗ and b∗ are pre-determined with 0 < a∗ < b∗ < 1.
In the GMLVQ framework, the privileged information is

incorporated by fusing the metric 3∗ in the privileged space X
∗

with the metric 3 in the original space X (for more details, see
Fouad et al., 2013).

3.2.3. Imbalanced Class Problem
Class imbalance occurs when there is a mismatch between sample
sizes representing different classes. Class imbalance is one of the
most common issues in classification. Unless explicitly treated,
the classifier can be biased toward the majority class. In general,
model fitting algorithms of various forms of classifiers assume
balanced class distribution. A variety of methods have been
proposed to tackle the class imbalance problem (e.g., García et al.,
2007). For example, the imbalance problem can be addressed

by either upsampling the minority class(es) (Pérez-Ortiz et al.,
2015), or downsampling the majority class(es) (Elrahman and
Abraham, 2013), so that the training set becomes balanced.

Since the data sets available for our study are relatively
small, instead of upsampling small minority class, we decided
to downsample the majority class, and repeat the downsampling
Nd = 100 times. Training portion of the minority class remains
fixed and each time the majority class is downsampled we
construct a classifier based on balanced classes. We thus obtain
a collection of Nd classifiers trained on different versions of
downsampled majority class. These classifiers are then combined
in an ensemble to form a single classifier using majority voting
over the ensemble members.

3.2.4. Employing Different Types of PI
We have two different kinds of features extracted from fMRI
signals and used as privileged information, namely percent
change (PSC) in overall ROI activation and graph based features
described above.

The PSC feature quantifies the relative activation difference in
the whole ROI when subjects were shown structured vs. random
stimuli. This is calculated both from both pre- and post-training
fMRI data. We consider 3 ROIs, hence there are 6 PSC privileged
information features. Analogously, for the graph-based spatial-
temporal features, there is a single feature for each ROI, measured
both pre- and post-training, yielding a totality of 6 graph-based
privileged information features.

An obvious combination of PSC and graph-based features
would be to concatenate them into 12-dimensional vector.
However, given the small sample size of participants, such an
approach might lead to overfitting. Therefore we constructed an
alternative way of combining privileged information features, as
outlined below.

We independently construct two classifiers operating in the
original space, but trained with the two different kinds of
privileged information. Given a test input, if both classifiers
predict the same class label, that label is used as the model output.
If, on the other hand, they disagree, we output the class label
that is predicted with “more confidence”—i.e., smaller distance
between the test input and the closest class prototype.

However, note that for the classification purposes, the metric
tensor in a single classifier can be arbitrarily scaled, since
only the relative relations between distances of test point to
the class prototypes are relevant. Hence, in order to compare
distances of the test point to the closest prototype in the
two classifiers, we need to normalize the learnt metrics. We
do this by eigen-decomposing the two metric tensors 31

and 32 and normalizing their eigenvalues to sum to 1. In
particular, the eigen-decomposition of 3i, i = 1, 2, reads
3i = Ui diag(λ

i
1, λ

i
2, ...λ

i
d
)U

⊺

i . The normalized metric tensor is
obtained as

3̂i = Ui diag(λ̂
i
1, λ̂

i
2, ..., λ̂

i
d)U

⊺

i , (21)

where the normalized eigenvalues are

λ̂ij =
λij

∑d
k=1 λi

k

. (22)
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Given a test input, when combining two ensemble classifiers
C1 and C2, if they agree on the predicted label, we output that
label as the overall label estimate. If, however, C1 and C2 disagree
on the label, we prefer the label produced with “more certainty”—
in our context—small average distance to the closest prototype.
In particular, if C1 is claiming class +1, we calculate the mean
distance of the test input to the closest prototype of class +1
across those ensemble members that output class +1 (e.g., their
closest prototype to the test input has label +1). Analogously,
for C2 claiming class −1, we record the mean distance of the
test input to the closest prototype of class −1 across ensemble
members outputting class −1. The overall class label of the
combined classifier for the test input is the label with the minimal
average distance to the closest prototype.

3.3. Experimental Design
The value of using brain imaging data as privileged information
in our setting can be evaluated through two extreme cases:

• No privileged information is available—the models
(classifiers) are constructed purely based on the cognitive
data. We will refer to this case asM-CD;

• Privileged brain imaging data is always available and is
used directly as input data in the classifier construction
and testing, without the need to resort to learning with
privileged information. We will refer to this case as M-PD.
The classifiers obtained in this regime with the PSC, FGF, and
SGF representations of brain imaging data are referred to as
M-PSC,M-FGF, andM-SGF, respectively.

When the classifiers are constructed in the framework of
learning with privileged information, with cognitive data serving
as classifier inputs and brain imaging data used as privileged
information, depending on what representation of brain imaging
data is used, we denote the resulting classifiers by M+-CD-PSC,
M+-CD-FGF, andM+-CD-SGF.

As explained above, PSC representation of spatial-temporal
structure of cortical activations within an ROI is the simplest
one, integrating out both the spatial and temporal structures.
In contrast, a more subtle representation is obtained in the
graph based features FGF and SGF, integrating over time,
but preserving aspects spatial structure. The PSC and graph
based features may contain complementary information for the
classification task and hence we further combine the classifiers
obtained using brain imaging data into composite ones, in
particular M+-CD-PSC and M+-CD-FGF are combined into a
single classifier M+-CD-PSC+FGF and the combination of M+-
CD-PSC and M+-CD-SGF is referred to as M+-CD-PSC+SGF.
Analogously, M-PD-PSC and M-FGF are combined to form M-
PSC+FGF and combination of M-PSC with M-SGF results in
M-PSC+SGF. The overall model structure setup is illustrated in
Figure 2.

4. EXPERIMENTS

This section assesses the classification performance of the
proposed methodology that incorporates fMRI as privileged
information (PD) in the training phase, against baseline

algorithms trained without PD, or trained solely with PD.
Since we expect that the brain imaging fMRI data carry lot
of information regarding possible MCI, the classier trained
directly on fMRI (M-PD) will provide a lower bound on the
classification error that a classifier trained solely on cognitive
data (M-CD) (carrying less information on possible MCI) cannot
achieve. We expect that the power of learning with privileged
information will boost the classification performance, so that
the classifier trained with CD as inputs, but able to incorporate
fMRI indirectly in the training process (M+-CD-PD), will have
classification performance between the two extremes M-PD and
M-CD, even though in the test phase, both M-CD and M+-CD-
PD classify solely based on CD. The methodology is formulated
in the framework of prototype-based classification (GMLVQ)
with metric learning (Schneider et al., 2009; Schneider, 2010;
Fouad et al., 2013). In this experiment, the original and privileged
features correspond to cognitive profiles and brain imaging data,
respectively. The overall experimental design is explained in
Section 3.3.

4.1. Experimental Setup
In the M-PD case, we have in total a set of 34 subjects having
both cognitive and brain imaging data, consisting of 9 patients
and 25 controls. We create 50 training-test set splits by randomly
sampling 6 and 17 patients and controls, respectively, to form the
training set (the rest is in the test set). In theM-CD case we have
60 subjects having cognitive data, consisting 13 patients and 47
controls. Again, we created 50 training-test set splits by randomly
sampling 9 and 33 patients and controls, respectively, to form
the training set. We made sure that in each resampled training
and test set there is an equal balance between subjects with and
without PD.

As explained in Section 3.2.3, to deal with class imbalance in
the M-PD case, we construct ensemble classifiers by using the
same set of 6 patients and repeatedly sampled 6 controls from the
17 training ones. Analogous setting was used in the M-CD case,
this time with 9 patients and 33 controls.

In all experiments, the (hyper-)parameters of the ensemble
classifiers were tuned via cross-validation on the training set
of the first sub-split only. The found values were then fixed
across the remaining 99 classifiers. In the GMLVQ classifier, data
classes are represented by one prototype per class. The class
prototypes are initialized as means of random subsets of training
samples selected from the corresponding class. In the IT metric
learning settings given in Fouad et al. (2013), lower (a, a∗) and
upper (b, b∗) percentile bounds for the privileged and original
spaces were tuned over the values of 5, 10, 15 and of 85, 90, 95,
respectively.

Throughout the experiments we had one data set in the
original space of CD. However, experiments were repeated for
three different fMRI PD: PSC, SGF, and FGF. PD of each subject
is represented by 6 features, 3 pre-training, and 3 post-training,
corresponding to 3 ROIs. Due to the imbalanced nature of our
classes we utilized the following below evaluation measures:

1. Confusion Matrix: it is a popular performance indicator
for machine learning algorithms. It is organized along the actual
classes (rows) and the predicted ones columns (Elrahman and
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FIGURE 2 | Schematic illustration of the experimental design described in Section 3.3. The items in diamond shape denote data: CD for cognitive data, PD

for privileged information data, PSC for Percent Signal Change, FGF for functionally grouped graph feature, and SGF for spatially grouped graph feature. M-XXX

denotes a GMLVQ classifier that does not use privileged information while XXX denotes the inputs to this classifier. For example, M-PSC means a GMLVQ classifier

with PSC features as its inputs. M+-XXX-YYY denotes a GMLVQ classifier using feature XXX as its inputs and feature YYY as privileged information. For example,

M+-CD-PSC means a GMLVQ classifier using cognitive features as its inputs and PSC features as privileged information. M+-XXX-YYY-ZZZ denotes a hybrid

classifier that combines the classification output of classifier M+-XXX-YYY and classifier M+-XXX-ZZZ using a certain rule (e.g., majority voting rule).

Abraham, 2013). In this study positive and negative examples
represent patients and controls, respectively. In the confusion
matrix, True Positive (TP) denotes the number of positive
examples correctly classified, True Negatives (TN) is the number
of negative examples correctly classified , False Positives (FP)
is the number of negative examples incorrectly classified, False
Negatives (FN) is the number of positive examples incorrectly
classified as negative. The true positive rate (TPR = TP

TP+FN )
measures the percentage of patients who are correctly classified,
whereas the true negative rate (TNR = TN

TN+FP ) measures the
proportion of the correctly identified controls. False positive
rate (FPR = FP

FP+TN ), refers to the probability of falsely
classifying the patients, whereas the false negative rate (FNR =

FN
FN+TP ) refers to the probability of falsely classifying the
controls. 2. Macroaveraged Mean Absolute Error (MMAE): it is
a macroaveraged version of Mean Absolute Error and it is a
weighted sum of the classification errors across classes (Fouad,
2013). It measures the per-class accuracy of class predictions ŷ
with respect to true class y on a test set:

MMAE =
1

N

N
∑

n=1

∑

yi=N |yi − ŷi|

Tn
(23)

Where N is the number of classes and Tn is the number of test
points whose true class is n.

4.2. Classification Results
We are primarily interested in classification performance of
M+-CD-PD classifiers, that is, classifiers using cognitive data as
their inputs and incorporating brain imaging data as privileged
information. this classification performance will be put in the
context of performances when no brain imaging information is
available (M-CD) and when the full brain imaging is available
as input (M-PD). This will allow us to quantitatively investigate
how much performance improvement over M-CD could be
obtained by incorporating privileged information throughmetric
learning. Following our experimental setup, we obtained 50
MMAE estimates for each classifier summarized by the mean,
standard deviation, median and the (25%, 75%) percentiles. The
results are summarized in Tables 1, 2.

Table 1 shows that for all five types of PD,M-PD outperforms
M-CD. Recall that we have extracted three different features
from the brain imaging data, namely PSC, SGF, and FGF, and
all of them can be used as PD. For PSC, which is related
to brain activation level, the corresponding median MMAE is
reduced by relatively 39.6% when compared to that of M-CD.
The other two types of PD, SGF, and FGF, are related to brain
connectivity pattern. When compared to the baseline classifier,
the relative reduction of their median MMAE is about 24 and
40%, respectively. The above results indicate that PSC is at least
as useful as the graph feature (FGF), or even more useful (SGF).
Im principle, the activation level and connectivity pattern are
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TABLE 1 | Classification performance measured by Macroaveraged Mean

Absolute Error (MMAE) for the baseline classifier, M-CD, and five different

M-PD classifiers (see Column 1).

Models Mean Std-Dev Median (25%, 75%)

Percentile

p-value

M-CD 0.3992 0.0949 0.3942 (0.3173, 0.4423) –

M-PSC 0.2357 0.1655 0.2381 (0.1429, 0.3333) 0.00

M-SGF 0.2666 0.1151 0.2995 (0.2143, 0.4048) 0.00

M-FGF 0.2376 0.1231 0.2381 (0.1429, 0.3333) 0.00

M-PSC+SGF 0.2438 0.1067 0.2381 (0.2143, 0.3095) 0.00

M-PSC+FGF 0.2200 0.1245 0.2143 (0.1429, 0.3095) 0.00

For each classifier, we report both mean MMAE, its standard deviation, median MMAE

and its (25%, 75%) percentile in Column 2 – 5, respectively. They were computed using

the MMAE estimates obtained from 50 randomly created training-test splits. Each p-

value displayed in Column 6 was obtained from one-sided sign-rank test against the null

hypothesis that the corresponding M-PD classifier is inferior to the baseline classifier.

TABLE 2 | The same as in Table 1 but for evaluation of the classification

performance of five different M+-CD-PD classifiers, that is, the classifiers

using CD as their inputs and PD as privileged information.

Models Mean Std-Dev Median (25%, 75%)

Percentile

p-value

M+-CD-PSC 0.3448 0.0988 0.3173 (0.2788, 0.4038) 0.00

M+-CD-SGF 0.3128 0.0804 0.3153 (0.2308, 0.3942) 0.56

M+-CD-FGF 0.3925 0.1211 0.3810 (0.2885, 0.4135) 0.12

M+-CD-PSC+SGF 0.3426 0.1116 0.3558 (0.2788, 0.4038) 0.00

M+-CD-PSC+FGF 0.3553 0.1157 0.3413 (0.2788, 0.4808) 0.04

two independent fMRI features. Therefore, PSC could be used
as PD along with SGF or FGF. Row 6–7 in Table 1 show that the
resulting classifier can either attain the classification performance
ofM-PSC in the case of SGF, or improve on it in the case of FGF.
In summary, brain imaging data contain more information that
are relevant to the task than cognitive data.

Table 2 shows that for all five types of PD, M+-CD-PD
outperforms M-CD. In particular, PSC and SGF are the best
two among the five PD types that are used as the privileged
information along with CD as GMLVQ’s inputs. Compared toM-
CD, bothM+-CD-PSC +M+-CD-SGF show a reduction of their
median MMAE by relatively 20%. This relative improvement
is shrunk to 13.4, 9.7, and 3.4% for M+-PSC+FGF, for M+-
PSC+SGF, and forM+-FGF (respectively).

Table 3 presents the results of average TPR and TNR of the
models. The best two TPR results (0.83 and 0.80) were achieved
by M-SGF and M-PSC-SGF (respectively), whereas the best two
TNR result (0.88 and 0.87) were attained byM-PSC andM+-CD-
FGF (respectively). Overall,M-FGF emerges as the classifier with
most balance performance.

4.3. Further Analysis
GMLVQ is a fully adaptive algorithm to learn global metric
tensor which accounts for different importance weighting of
individual features and pairwise interplay between the features,
with respect to the given classification task. Hence, it allows us

TABLE 3 | Overall true positive rates (TPR) and true negative rates (TNR)

on hold-out sets.

Model TPR TNR

M-CD 0.60 0.60

M-PSC 0.64 0.88

M+-CD-PSC 0.69 0.63

M-SGF 0.83 0.51

M+-CD-SGF 0.53 0.67

M-PSC+SGF 0.80 0.68

M+-CD-PSC+SGF 0.56 0.70

M-FGF 0.74 0.76

M+-CD-FGF 0.38 0.87

M-PSC+FGF 0.56 0.70

M+-CD-PSC+FGF 0.61 0.70

to study the task-dependent relevance of the input features by
using the diagonal elements of the GMLVQmetric tensor matrix.
Moreover, the global metric can be further optimized adaptively
by incorporating privileged information into the GMLVQmodel
via the distance relations revealed in the privileged space (Fouad,
2013). In the following we analyse the learned classification
models in terms of the learned metric tensor and discuss possible
implications regarding the cognitive and brain imaging fMRI
features used in this study.

4.3.1. Cognitive Features Only
We first present a procedure to study the relevance of
four cognitive features (working memory, cognitive inhibition,
divided attention, and selective attention) using the GMLVQ
metric (tensor) matrices obtained from the experiments whose
classification results are discussed in Section 4.2. Each of these
experiments resulted in 50 × 100 GMLVQ classifiers with
the associated metric (tensor) matrices 3 obtained by training
GMLVQ classifiers on 50 × 100 (small) data sets independently.
Recall that these data sets were generated by first randomly
splitting the whole training set into 50 smaller sets of equal size
and then randomly downsampling the majority class to the size
of the minority class in each split 100 times. However, many of
the 50 × 100 classifiers performed poorly and they should not
be included in the analysis of the relevant cognitive features. We
therefore discard the data split producing the ensemble classifier
whose Nb-th best ensemble member (classifier) produced error
larger than a threshold value denoted by Emax, and pool all
ensemble members from each of the remaining splits for further
analysis. This procedure is applied to three experiments as
follows: M-CD, M+-CD-PSC and M+-CD-FGF. We found out
that Nb = 15 and Emax = 25% worked universally across these
data sets.

Each of the four cognitive features is associated with one of
the four diagonal element in the metric (tensor) matrix. For each
cognitive feature, its importance is measured by the frequency of
its associated diagonal elements in > 90% percentile of the set of
all diagonal elements from the metric (tensor) matrices selected
by the above procedure. The left panel in Figure 3 shows that the
divided attention (i.e., td

disp
) is the most discriminative feature for

the classification task (MCI patients vs. healthy controls).
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FIGURE 3 | The importance histogram of the four cognitive features as follows: working memory (ndots), cognitive inhibition (tdelay), divided

attention (td
disp

), and selective attention (ts
disp

) (numbered as 1, 2, 3, and 4 in the order). These features are used as the input to the following GMLVQ

classifiers: M-CD, M+-CD-PSC, and M+-CD-FGF (from left to right). Note that each cognitive feature is associated with a diagonal element of the GMLVQ metric

tensor matrix 3 and the importance histogram counts the number of each diagonal element in the >90% percentile of all diagonal elements from an ensemble of 3s.

Next, we studied the off-diagonal elements of those metric
(tensor) matrices. Each off-diagonal element controls the
interplay between two associated cognitive features. To illustrate
how this interplay works, we provide a toy example as follows:
Denote a two-dimensional feature vector by (x, y) and a 2 ×

2 metric tensor by
(

α γ

γ β

)

. The distance between two feature

vectors indexed by i and j is given by

dij = α2 · (xi − xj)
2 + β2 · (yi − yj)

2

︸ ︷︷ ︸

dMij

+ 2γ · (xi − xj)(yi − yj)
︸ ︷︷ ︸

d2ij

.

(24)
The first two terms of dij is actually so-called Mahalanobis
distance between the i-th and j-th feature vectors (denoted
by dMij ). In the case of γ = 0, the diagonal term α and

β are optimized by maximizing between-class Mahalanobis
distances while minimizing within-class ones. When the metric
matrix has non-zero off-diagonal elements, the distance measure
has additional contribution d2ij which can either enhance or

collapse the total distance measure depending on (i) the
sign of γ and (ii) the sign of between-class correlation (i.e.,
correlation between class-conditional means of x and y). For
example, in the case of negative between-class correlation,
negative γ can further enhance the class separation and vice
versa.

To test whether the interplay between two cognitive features,
indexed by i and j, is positive or negative, we performed two
one-sided sign-rank tests for the hypotheses 3ij > 0 and
3ij < 0 (respectively) using the corresponding off-diagonal
element from the selected GMLVQmetric (tensor) matrices. The
upper-left panel of Figure 4 shows that there exists statistically
significant, negative interplay between divided attention and two

following cognitive features: (1) working memory (ndots) and
(2) cognitive inhibition (tdelay). From the lower-left panel, we
found statistically significant, positive interplay between three
cognitive features as follows: (1) working memory, (2) cognitive
inhibition, and (3) selective attention (ts

disp
). Finally, note that

there is no significant interplay between divided attention and
selective attention.

To examine the relation between the interplay and between-
class correlation revealed by Equation (24), we need to determine
whether or not there exists statistically significant between-class
correlation between two of the four cognitive features. To this
end, we first used one-sided sign-rank test to determine, for
each of the four features, whether its values for MCI patients are
significantly larger or significantly smaller than those for healthy
controls. For each pair of the cognitive features, if the outcomes of
their tests are both statistically significant and are consistent with
(or in opposite to) each other, then their between-class correlation
is considered as positive (or negative). Otherwise, the between-
class correlation is insignificant. From this analysis we observe
(1) the class-conditional mean of working memory is positively
correlated with that of cognitive inhibition; and (2) the class-
conditional mean of divided attention is negatively correlated
with that of working memory as well as that of cognitive
inhibition. These observations agree with the observation of the
interplay between the corresponding cognitive features, which
can enhance the class separation. For the remaining pairs of
the cognitive features, their between-class correlation is not
significant. In Figure 5, we graphically illustrate the presence or
absence of these correlations.

In summary, though the divided attention is the most relevant
feature among the four cognitive features, all four features are
indispensable for maximizing the classification performance.
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FIGURE 4 | The p values of the one-sided sign-rank tests for studying the interplay between two of the following cognitive features: working memory

(ndots), cognitive inhibition (tdelay), divided attention (td
disp

), and selective attention (ts
disp

) (numbered as 1, 2, 3, and 4 in the order). From each panel in

the upper and lower row, one can read that if the p value is smaller than the threshold p = 0.05 (indicated by red dashed line), the interplay of two corresponding

cognitive features is statistically significant and it takes a negative and positive value (respectively); These features are the inputs to three GMLVQ classifiers as follows:

M-CD, M+-CD-PSC, and M+-CD-FGF (from left to right). Note that the tests used the off-diagonal elements of the GMLVQ metric tensor matrices.

This is because these exists between-class correlation between the
features.

4.3.2. fMRI Features
We carried out the same relevance analysis for M-PSC,
M-SGF, and M-FGF as for M-CD in Section 4.3.1. Recall
that in these three experiments, the inputs to GMLVQ
classifiers are comprised of six fMRI features as follows:
(i) PSC-Cerebellar-Pre, PSC-Cerebellar-Post, PSC-Frontal-Pre,
PSC-Frontal-Post, PSC-Subcortical-Pre, PSC-Subcortical-Post;
(ii) SGF-Cerebellar-Pre, SGF-Cerebellar-Post, SGF-Frontal-Pre,
SGF-Frontal-Post, SGF-Subcortical-Pre, SGF-Subcortical-Post;
and (iii) FGF-Cerebellar-Pre, FGF-Cerebellar-Post, FGF-Frontal-
Pre, FGF-Frontal-Post, FGF-Subcortical-Pre, FGF-Subcortical-
Post (respectively). The fMRI feature “PSC-Cerebellar-Pre”
denotes PSC feature that is derived from fMRI data measured in
the cerebellar ROI and during the pre-training session. and the
remaining fMRI features are abbreviated in the same way. Recall
that PSC is referred to as Percent Signal Change, SGF as Spatially
grouped Graph Feature and FGF as Functionally grouped Graph
Feature.

Figure 6 shows that PSC-Frontal-Post and FGF-Frontal-Pre
are the most discriminative fMRI feature in Experiment M-PSC
and M-FGF (respectively). We first note that the most relevant
feature in both cases is derived from the frontal ROI (that is,
the largest ROI among the three ROIs used in this study). It is
more interesting to address two following questions: (1) why is
the post-training session is more relevant than the pre-training
one, when PSC is used for the task; and (2) why is the opposite
true when the graph feature is used for the task.

The left panel in Figure 7 shows that before training, the
PSC level for MCI patients and healthy controls are on average
comparable. However, training caused a remarkable increase of
the PSC level for MCI patients but not for healthy controls. As
a result, these two participant groups differ in their PSC level
after the training. This is why PSC-Frontal-Post is identified
as the most relevant feature for Experiment M-PSC. The right
panel in Figure 7 shows that the graph feature FGF differs
between MCI patients and healthy controls before training. This
could be related to the suggestions that MCI may have caused
changes in brain connectivity. We further observe that for both
participant groups, training increased their FGF values but to
different extents. After training, the difference between MCI
patients and healthy controls became much less significant. This
is why FGF-Frontal-Pre is identified as the most relevant feature
for Experiment M-FGF. This observation allows us to speculate
that training could “mitigate” the changes in brain connectivity
caused by MCI.

The above analysis suggests that brain connectivity may have
changed after training and this is significant particularly for MCI
patients. In the following, we address the question whether a
sub-network rather than the entire (local) network within the
frontal ROI has changed. Recall that all 128 voxels in the frontal
ROI are grouped into 7 spatially contiguous clusters. This results
in a local brain network consisting of 7 nodes and 21 edges
(see Figure 8). Each off-diagonal element of the graph matrix G
quantifies the connectivity between two nodes and measures the
strength of the corresponding edge. Recall that the graph features
FGF were extracted by applying 2D-LDA. To this end, 2D-LDA
provides two feature-generating vectors a and b from which we
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FIGURE 5 | Scatter plot for six possible feature pairs from the four cognitive features as follows: working memory (ndots), cognitive inhibition (tdelay),

divided attention (td
disp

), and selective attention (ts
disp

) (numbered as 1, 2, 3, and 4 in the order). For individual MCI patients and healthy controls, their

feature pairs (i.e., Feature 1 vs. Feature 2) are displayed as red and black dots (respectively). The corresponding class-conditional means and standard deviations are

also displayed by colored error bars. For each panel, the corresponding two features are indicated at the top of each column and on the utmost left of each row

(respectively).

can derive a task-dependent importance matrix denoted by I as
follows:

I =
1

2
(ab⊺ + ba⊺). (25)

Each off-diagonal element of I measures the importance of the
corresponding edge in terms of discriminating MCI patients
from healthy controls. To identify possible sub-networks that
have significantly changed after training, we are first to identify
the edges whose importance measure has significantly changed

after training. To this end, we generated an ensemble of the
selected importance matrices using the procedure that was used
to generate an ensemble of the selected GMLVQ metric (tensor)
matrices for the relevance feature analysis. Subsequently, we
conducted two one-sided sign rank tests for each of the 21 edges
to find those edges whose importance values have significantly
increased or reduced after training. Denote the edge connecting
node i and j by Eij. This analysis revealed that the importance
measure of three following edges has significantly increased: E17,
E16, and E64. A significant reduction of its importance measure
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FIGURE 6 | Left panel: The importance histogram of the six fMRI features as follows: PSC-Cerebellar-Pre, PSC-Cerebellar-Post, PSC-Frontal-Pre, PSC-Frontal-Post,

PSC-Subcortical-Pre, and PSC-Subcortical-Post. (numbered as 1, ..., and 6 in the order). PSC is referred to as Percent Signal Change, Pre as Pre-training session,

Post as Post-training session, Cerebellar (Frontal and Subcortical) as the cerebellar(frontal and subcortical, respectively) ROI. For example, PSC-Cerebellar-Pre means

that the fMRI data were acquired before training and PSC feature was extracted from the cerebellar ROI). Right panel: The same as in the left panel but for the

following fMRI features: FGF-Cerebellar-Pre, FGF-Cerebellar-Post, FGF-Frontal-Pre, FGF-Frontal-Post, FGF-Subcortical-Pre, and FGF-Subcortical-Post.

FIGURE 7 | Left: Boxplot of the following fMRI features: FGF-Frontal-Pre for MCI patients, FGF-Frontal-Pre for healthy controls, FGF-Frontal-Post for MCI patients,

and FGF-Frontal-Post for healthy controls (numbered as 1, 2, 3, and 4 in the order). Note that the y-axis represents the values of the corresponding fMRI features;

Right: Boxplot of the following fMRI features: PSC-Frontal-Pre for MCI patients, PSC-Frontal-Pre for healthy controls, PSC-Frontal-Post for MCI patients, and

PSC-Frontal-Post for healthy controls (numbered as 1, 2, 3, and 4 in the order).

was observed for E65. These four edges are displayed in Figure 8.
Figure 9 highlighted a subtle difference between the sub network
(i.e., E17, E16, and E64) and the single edge E65. For the three-
node sub-network, the connectivity strength is highest for MCI
patients before training. For the single edge E65, the connectivity
strength is lowest for healthy controls before training. This
suggests that FGF-Frontal-Pre, the most relevant feature in M-
FGF, could be related to these three-node and single-node sub-
networks.

4.3.3. Privileged Information
In addition to M-CD, M-PSC, and M-FGF, M+-CD-PSC,
and M+-CD-FGF were conducted to investigate GMLVQ
classification of MCI patients and controls when fMRI features
were incorporated as privileged information. The relevance of
the four cognitive features inM+-CD-PSC andM+-CD-FGFwas
estimated from the diagonal elements of the metric tensors and
displayed in themiddle and right panel of Figure 3 (respectively).
Though PSC and FGF are two different kinds of fMRI features, we
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FIGURE 8 | The node configuration for the frontal ROI which includes

Superior Frontal Gyrus on the right hemisphere and Medial Frontal

Gyrus on the left hemisphere. The straight lines indicate the edges whose

importance for discriminating MCI patients from healthy controls has

significantly changed. For the three-node subnetwork (indicated by red lines),

its importance has increased after training. In contrast, the single-node

subnetwork (indicated by blue line), training has reduced its importance.

still consistently observed that cognitive inhibition and divided
attention are the two most relevant cognitive features. Moreover,
the relevance of divided attention is more profound than that
of cognitive inhibition. When compared to M-CD, cognitive
inhibition did emerge as a relevant feature only when the
privileged information was incorporated. Also, Figure 4 shows
that when compared to M-CD, the interplay between divided
attention and selective attention became significantly positive in
M+-CD-PSC andM+-CD-FGF, that is, the experiments in which
the privileged information was incorporated.

5. CONCLUSION

In this study, we employed GMLVQ classifiers to discriminate
cognitive skills in MCI patients vs. healthy controls using
cognitive and/or fMRI data. Specially, we have adopted
a “Learning with privileged information (PI)” approach to
combine cognitive and fMRI data. In this setting, fMRI data as an
addition to cognitive data are only used to train GMLVQ classifier
and classification of a new participant is solely based on cognitive
data. As the inputs to GMLVQ classifier, the cognitive features
include working memory, cognitive inhibition, divided attention
and selective attention scores. Also, we extracted three different
types of fMRI features from fMRI data as follows: PSC (percent
signal change), and SGF (spatially grouped graph feature) and
(functionally grouped graph feature).

We first tested our baseline GMLVQ classifier with four
cognitive features as inputs. Its classification performance is
measured by (25%, 75%) percentile of Macro-averaged Mean
Absolute Error (MMAE), that is, (0.32, 0.44). The best of the five
fMRI GMLVQ classifiers (i.e., the ones using the fMRI features
as their inputs) yields a lower bound of classification error, which
is (0.14, 0.31). Interestingly, the best of the PI-guided GMLVQ
classifiers (i.e., the ones using the four cognitive features as their
inputs and using the fMRI features as privileged information)
have achieved (0.23. 0.39). This implies that incorporating fMRI
features as privileged information can significantly improve
the classification performance of a baseline GMLVQ classifier
for classification of cognitive skills in MCI patients vs.
controls.

Crucially, we have also performed “relevant feature analysis”
for all three GMLVQ classifiers: the baseline GMLVQ classifier,
the best fMRI-guided GMLVQ classifier, and the fMRI GMLVQ
classifier. For the baseline classifier, “divided attention” is the
only relevant cognitive feature for the classification task. When
the privileged information is incorporated, divided attention
remains the most relevant feature while cognitive inhibition
becomes also relevant. The above results suggest that attention-
rather than only memory-plays an important role for the
classification task. More interestingly, this analysis for the fMRI
GMLVQ classifier suggests that (1) among three ROIs used,
the frontal ROI is most relevant for the classification task;
(2) when the PSC feature as an overall measure of fMRI
response to structured stimuli is used as the inputs to the
classifier, the post-training session is most relevant; and (3)
when the graph feature reflecting underlying spatiotemporal
fMRI pattern is used, the pre-training session is most relevant.
Further analysis has indicated that training may cause an overall
increase of the brain activity only for MCI patients while it
may have “mitigated” the difference in brain connectivity pattern
between MCI patients and healthy controls. Moreover, these
training-dependent changes are most significant for a three-node
sub-network in the frontal ROI. Taken together these results
suggest that brain connectivity before training and overall fMRI
signal after training are both diagnostic of cognitive skills in
MCI

Our study employs machine learning algorithms to investigate
the neurocognitive factors and their interactions that mediate
learning ability in Mild Cognitive Impairment. Our work is
not limited to developing and validating machine learning
approaches; in contrast it advances our understanding of the
neurocognitive mechanisms that mediate learning in health
and disease. For example, the role of cognitive inhibition
in cognitive profile classification seems to be significantly
enhanced when brain imaging information (related to a sequence
learning prediction task) is provided as privileged information.
This opens questions about the possible interplay between
circuits involved in cognitive inhibition and those involved
in learning sequence prediction tasks. We also observed
significant positive interplay between divided and selective
attention when brain imaging data is used as privileged
information. No such interplay was detected without the
privileged information. Again, this raises interesting questions
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FIGURE 9 | For the graph matrices generated in thi study, we display four of their matrix elements which are associated with the four edges

highlighted in Figure 8. G1,6 in the upper-left panel, G1,7 in the upper-right panel, and G4,5 in the lower-left panel measure the connectivity of edge E1.6, E1,7 and

E4,5 (respectively) that form the three-node sub-network. Recall that the task-related importance of this sub-network has significantly increased after training. In

contrast, G5,6 in the lower-right panel measures the connectivity of edge E5.6 and its task-related importance has significantly reduced after training. The four

boxplots in each panel are associated with pre-training session & patient group, pre-training session & control group, post-training session & patient group, and

post-training session & control group (from left to right, numbered as 1, 2, 3, and 4 in the order).

regarding circuitry involved in sequence prediction and the two
attention types.
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