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SUMMARY

Learning and experience are critical for translating ambiguous sensory information from our environments to
perceptual decisions. Yet evidence on how training molds the adult human brain remains controversial, as
fMRI at standard resolution does not allow us to discern the finer scale mechanisms that underlie sensory
plasticity. Here, we combine ultra-high-field (7T) functional imaging at sub-millimeter resolution with orienta-
tion discrimination training to interrogate experience-dependent plasticity across cortical depths that are
known to support dissociable brain computations. We demonstrate that learning alters orientation-specific
representations in superficial rather than middle or deeper V1 layers, consistent with recurrent plasticity
mechanisms via horizontal connections. Further, learning increases feedforward rather than feedback
layer-to-layer connectivity in occipito-parietal regions, suggesting that sensory plasticity gates perceptual
decisions. Our findings reveal finer scale plasticity mechanisms that re-weight sensory signals to inform
improved decisions, bridging the gap between micro- and macro-circuits of experience-dependent plas-
ticity.

INTRODUCTION

Understanding theworldaroundusdependson thebrain resolving
ambiguous information from our senses to inform our decisions
and actions. The brain learns to interpret sensory signals by using
past experience to optimize perceptual judgments. Although this
experience-dependent brain plasticity is most evident during
development, training in adulthood is shown to improve visual
recognition skills and alter the brain’s function and connectivity
[1–4]. Yet evidence on how practice molds the adult human brain
and results in improved decisions remains controversial.
The neural computations that mediate experience-dependent

plasticity are highly debated (e.g., [1, 5, 6]). Results from behav-
ioral training studies focusing on visual discrimination tasks (i.e.,
perceptual learning tasks) have long been understood to suggest
that plasticity occurs at early stages of sensory processing (i.e.,
primary visual cortex), as learning was shown to be specific to
the trained stimulus features (e.g., [7, 8]). Neurophysiological re-
cordings [9, 10] and human imaging data [11–13] support this
early neural locus hypothesis by showing that training changes
neural responses in primary visual cortex, implying that learning
alters stimulus encoding. By contrast, other studies have shown
that learning alters processing in higher visual areas [14, 15] and
regions involved in decision making [6, 16]. This suggests that
learning changes the readout of sensory information [5] from
higher cortical areas rather than sensory encoding in visual cor-
tex, with changes in activity in early visual cortex reflecting feed-
back processes [17].

Here, we capitalize on recent advances in brain imaging tech-
nology (i.e., ultra-high-field [UHF] imaging) that allow us to inter-
rogate brain computations at a finer scale than that afforded by
standard fMRI techniques [18]. UHF imaging affords the sub-
millimeter resolution necessary to examine fMRI signals across
cortical laminar layers that are known to be associated with
dissociable brain computations (Figure 1). In particular, sensory
input is known to enter the cortex from the thalamus at the level
of the middle layer (layer 4) and output information is fed forward
from the superficial layers (layer 2/3), whereas feedback informa-
tion is exchanged primarily between deeper (layer 5/6) and su-
perficial layers [19–22]. Further, horizontal connections across
V1 columns are known to predominantly terminate in superficial
layers [23, 24] and suggested to support recurrent processing
within visual cortex [25, 26]. Neurophysiological studies have
shown that this micro-circuit is involved in a range of visual
recognition [26] and attention [27] tasks. Recent laminar fMRI
studies provide evidence for the involvement of this circuit in
the context of sensory processing [28] and visual attention [29].
We combine 7T laminar fMRI (i.e., before and after training)

with training on an orientation discrimination task to test whether
learning modifies signals in (1) middle layers involved in input
encoding, (2) superficial layers involved in recurrent processing
via horizontal connections, and (3) deeper or superficial
layers involved in feedback processing from higher decision-
related regions (i.e., intra-parietal cortex [IPS]). Using multi-
voxel pattern classification analysis (MVPA) across cortical
depths, we demonstrate learning-dependent changes in visual
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representations that are specific to superficial rather than middle
or deeper V1 layers. Further, we show enhanced feedforward
connectivity between superficial layers in visual cortex and mid-
dle layers of posterior parietal cortex rather than feedback
connectivity between deeper layers in these areas. Our findings
propose a key role in learning for recurrent processing within
visual cortex and feedforward processing from sensory- to
decision-related areas.

RESULTS

Learning-Dependent Changes in Perceptual
Discrimination
We trained participants (n = 15; data from two participants were
excluded due to excessive headmovement and technical issues
during acquisition) on an orientation discrimination task [9, 12]
for 5 consecutive days and tested their performance on the
same task during fMRI scanning before and after training (Fig-
ures 2A and 2B). We measured performance using a 3-down-
1-up staircase that converged at 79.4% correct. Participants’
performance improved during training (Figure 2C), as indicated
by a significant decrease in threshold (79.4% correct; paired t
test; mean threshold on day 1 versus day 5: t(12) = 8.108; p <
0.001).

To determine the specificity of this learning, wemeasured par-
ticipants’ discrimination threshold for two different orientations
(i.e., trained versus untrained orientations that corresponded to
55! or 125!; vertical orientation: 0!) at two different locations
(i.e., trained versus untrained location that corresponded to the
left or right visual field) before and after training. Our results
showed that behavioral improvement due to training was stron-
ger for the trained orientation and location (Figures 2D and S1),
consistent with previous studies [8] showing specificity to the
trained stimulus features. In particular, we observed a significant
orientation3 location3 session interaction (repeated-measures
ANOVA; F(1,12) = 11.858; p = 0.005) and a significant orientation
3 session interaction (F(1,12) = 21.551; p = 0.001) at the trained,
but not the untrained (F(1,12) = 3.093; p = 0.104), location. As
suggested by recent work [7], it is likely that this learning speci-
ficity is due to prolonged training near threshold (i.e., employing a
single staircase) [30], in contrast to supra-threshold training that
has been suggested to enhance transfer and higher level
learning [31].

Learning-Dependent Changes across Cortical Depths in
the Visual Cortex
To test whether learning alters orientation representations
across cortical depths in the visual cortex, we segmented the
visual areas and assigned voxels to three layers (superficial,
middle, and deeper) using an equi-volume approach (see
STAR Methods, Anatomical data analyses for details; Figures
3A and 3B). Voxels identified as containing large veins were
removed from the analysis to improve the spatial specificity of
the laminar profiles (Figures 3C–3E). We used MVPA to discern
orientation-specific fMRI signals and test for differences in these
signals before versus after training across layers. In particular,
we testedwhether linear classifiers that were trained on fMRI sig-
nals from multi-voxel patterns in different V1 layers (superficial,
middle, and deeper) discriminated between (1) trained (55! or
125!) versus control (vertical) orientations and (2) untrained
(125! or 55!) versus control (vertical) orientations. Classifying
each of the reference orientations (55! or 125!) from the control
(vertical) orientation allowed us to test learning-dependent
changes separately for the trained versus untrained orientations.
We hypothesized that higher MVPA accuracy after training for
the trained versus control orientation classification than the un-
trained versus control orientation classification would indicate
orientation-specific, learning-dependent plasticity. Note that,
as both the trained and untrained orientation differed equally
from the control orientation ("55!), accuracy differences be-
tween these classification tasks could not be attributed to stim-
ulus differences.
Our results showed learning-dependent changes (i.e.,

increased MVPA accuracy) for the trained orientation in superfi-
cial rather than middle or deeper layers in V1 (Figures 4 and 5A).
In particular, a three-way repeated-measures ANOVA (orienta-
tion 3 session 3 layer) on the MVPA accuracy showed a signif-
icant three-way interaction (F(2,24) = 4.244; p = 0.026). Two-way
repeated-measures ANOVAs (orientation 3 session) showed a
significant interaction in superficial V1 layers (F(1,12) = 12.223;
p = 0.004), but not in middle (F(1,12) = 0.012; p = 0.913) or deeper
(F(1,12) = 0.446; p = 0.517) layers. Further, we observed
enhanced discriminability (i.e., MVPA accuracy) for the trained
orientation in superficial (t(12) = #2.665; p = 0.021), but not
middle (t(12) = #0.783; p = 0.449) or deeper (t(12) = #0.489;
p = 0.633), layers. In contrast, we did not observe any significant
learning-dependent changes for orientations presented in the

Figure 1. Laminar Brain Circuits
Schematic representation of the hypotheses tested;

training may modify (1) feedforward processing

(blue arrows) between LGN and V1, (2) recurrent

processing via horizontal connections within the

visual cortex (horizontal connections [indicated by

orange arrows] between excitatory [open circles]

and inhibitory [filled circles] neurons, and (3) feed-

back processing (green arrows) between V1 and

higher areas (i.e., V2, V3, V4, and IPS) based on

known anatomical circuits.
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untrained location. In particular, there was no significant three-
way interaction (orientation 3 session 3 layer; F(2,24) = 0.603;
p = 0.555) or any significant orientation 3 session interactions
across V1 layers (superficial layers: F(1,12) = 0.053, p = 0.821;
middle layers: F(1,12) = 0.538, p = 0.478; deeper layers:
F(1,12) = 2.211, p = 0.163).
Taken together, our results showed that learning-dependent

changes in orientation representations in superficial V1 layers
were specific to the trained orientation and location. It is unlikely
that these learning-dependent changes in visual representations
were due to differences in attention related to task difficulty
before versus after training, as participant performance was

matched across scanning sessions. Matching task performance
across scanning sessions resulted in smaller angle differences
between the sample and test stimuli for the trained than un-
trained orientation after training. However, this angle difference
for the trained orientation did not correlate significantly with
MVPA accuracy in superficial V1 layers for either session (pre-
test: r = #0.002, p = 0.994; post-test: r = #0.047, p = 0. 878)
or the difference between sessions (r = #0.177; p = 0.562).
Further, randomizing the phase of the gratings and jittering their
orientation ensured that our results could not be due to adapta-
tion to similar orientations after training, as indicated by the lack
of significant differences in blood-oxygen-level-dependent

Figure 2. Experimental Design, Task, and Behavioral Results
(A) Experimental design. Participants were trained on an orientation discrimination task with feedback for 5 consecutive days. Before and after training, we

measured participant’s performance on the same task without feedback in the lab and during scanning.

(B) Orientation discrimination task. For each trial, participants were asked to report whether the second grating was tilted clockwise or counterclockwise relative

to the first grating.

(C) Mean performance across participants at 79.4% threshold for the training (filled circles) and the control (open circle) sessions.

(D) Mean improvement index (MPI) ([pre-test threshold# post-test threshold]/pre-test threshold3 100%) showed learning specificity for the trained compared to

the untrained orientation presented at the trained versus untrained location. A two-way repeated-measures ANOVA on MPI (orientation 3 location) showed a

significant interaction (F(1,12) = 14.847; p = 0.002). Post hoc comparisons showed significantly higher improvement for the trained than the untrained (t(12) =

5.564; p < 0.001) orientation at the trained location. In contrast, no significant differences were observed between the trained and the untrained (t(12) = #1.608;

p = 0.134) orientations at the untrained location.

See Figure S1 for threshold performance before and after training. Error bars indicate standard error of the mean across participants.
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(BOLD) responses across sessions and orientations (Figure S2).
These analyses suggest that differences in the orientation
distribution of the trained versus untrained stimuli could not
account for the layer-specific, learning-dependent changes we
observed.

Complementary and Control Analyses
To further validate our results and control for potential con-
founds, we conducted the following additional analyses. First,
it has been shown that the overall BOLD signal as measured
by 2D gradient echo, echo planar imaging (GE-EPI) is higher at
the cortical surface due to vascular contributions [32], resulting
in loss of spatial specificity [33]. Here, we combined several ap-
proaches to reduce this superficial bias by removing voxels with
low temporal signal-to-noise ratio and high t-statistic for stimula-
tion contrast (see STAR Methods, correcting for vascular effects
for details). We then Z scored each voxel’s time course to

account for possible differences in signal strength and variance
due to thermal or physiological noise across layers while preser-
ving differences between conditions [29]. These corrections re-
sulted in similar BOLDmagnitude and multi-voxel pattern classi-
fication accuracy before training across layers (Figure 3E),
suggesting that our approach for correcting vasculature-related
effects controlled substantially for the superficial bias. In partic-
ular, consistent with previous studies [34] showing reduced su-
perficial bias for MVPA classification measures, we did not
observe any significant differences in MVPA accuracy between
trained and untrained orientations before training (e.g., orienta-
tion 3 location 3 layer interaction: F(2,24) = 0.891, p = 0.423;
main effect of layer: F(2,24) = 0.287, p = 0.753). Thus, it is unlikely
that our MVPA results after vasculature correction were signifi-
cantly confounded by the superficial bias.
Second, we applied a spatial regression approach [35, 36] to

control for signal contribution from draining veins. In particular,

Figure 3. fMRI Layer Definition and Vascular Correction
(A) Coronal view of the anatomical image of a sample participant. Red inset indicates region of interest in visual cortex.

(B) Layers definition map overlaid on an anatomical image (blue, deeper layers; green, middle layers; red, superficial layers).

(C) Voxels confounded by vasculature-related effects (highlighted by arrows and in red) overlaid on functional images.

(D) BOLD activation map (stimulus versus fixation) overlaid on the anatomical (left panel) and functional data (right panel).

(E) Mean normalized BOLD in V1 before and after correction for vasculature-related effects, showing reduced superficial bias after correction. Error bars

indicate standard error of the mean across participants. We observed significant interactions (pre-test session: F(2,24) = 50.961, p < 0.001; post-test session:

F(2,24) = 36.887, p < 0.001) between layer (superficial, middle, and deeper) and BOLD signal (before versus after correction). The stronger BOLD decrease in

upper (i.e., superficial and middle) than deeper layers after correction suggests that our approach for correcting vasculature-related effects controlled

substantially for the superficial bias.
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intra-cortical veins running perpendicular to the cortical surface
are known to drain blood from deeper layers of the cortex to
larger pial veins situated along the gray matter surface, resulting
in loss of spatial specificity and intra-layer BOLD signal contam-
ination. To unmix the signal from adjacent layers, for each voxel
in the superficial layers, we found the nearest neighbor in the
middle layers. We regressed out the mean time course of these
voxels assigned to middle layers from the time course of voxels
assigned to superficial layers. MVPA analysis following this
correction showed a significant interaction between orientation
and session (F(1,12) = 14.357; p = 0.003; Figure S3A), consistent
with learning-dependent changes in superficial layers. Further,
we observed enhanced discriminability in superficial layers after
correction for the trained orientation (t(12) = #2.292; p = 0.041),
but not the untrained orientation (t(12) = 0.246; p = 0.810).
Learning-dependent changes in superficial V1 layers remained
significant after these corrections, suggesting that our results
are unlikely to be significantly confounded by vasculature-
related artifacts.
Third, comparingmean normalized fMRI responses (Figure S2)

across orientations and sessions did not show any significant re-
sults (three-way interaction [orientation 3 session 3 layer]:
F(4,48) = 1.259; p = 0.299; two-way interaction [orientation 3
session] in the superficial layers: F(2,24) = 0.814, p = 0.455;
middle layers: F(2,24) = 0.934, p = 0.407; and deeper layers:
F(2,24) = 0.389, p = 0.682), suggesting that the learning-depen-
dent effects we observed reflect changes in orientation-specific
representations across voxel patterns rather than mean univari-
ate fMRI responses.
Fourth, we corroborated our results using a correlation-based

pattern analysis [37] that showed learning-dependent changes in
superficial V1 layers for the trained compared to the untrained
orientation (Figure S3B). Specifically, Fisher’s z comparisons
showed a significant orientation3 session interaction in superfi-
cial V1 layers (F(1,12) = 6.069; p = 0.030), but not in middle
(F(1,12) = 2.382; p = 0.149) or deeper (F(1,12) = 1.227; p = 0.290).
Taken together, these results demonstrate enhanced orienta-

tion-specific representations in superficial rather than middle or

deeper V1 layers after training. Similar learning-dependent ef-
fects with stronger learning-dependent changes in superficial
layers were observed across visual areas (V1, V2, V3, and V4;
Figure S4). In particular, a repeated-measures ANOVA
showed no significant region of interest (ROI) 3 orientation 3
session 3 layer interaction (F(2,24) = 1.459; p = 0.252) but a
significant orientation 3 session 3 layer interaction (F(2,24) =
5.305; p = 0.012), suggesting similar orientation-specific learning
effects in superficial layers across visual areas.

Learning-Dependent Changes Independent of Task
Context in the Visual Cortex
Our results showed learning-dependent changes in orienta-
tion-specific representations when participants performed a
fine orientation discrimination task. To test whether the task
performed by the participants is critical for this orientation-
specific plasticity, we tested a subset of participants (n = 8)
in a second post-training fMRI session while performing a con-
trol task (i.e., contrast change detection task) on identical
stimuli to those presented to the participants during the
post-training fMRI session. Before this additional scanning
session, we conducted behavioral tests to ensure that percep-
tual improvement was retained. We observed that threshold
performance (mean = 1.78!; SD = 0.43!) did not differ signifi-
cantly from the mean threshold of training day 5 (mean =
1.69!; SD = 0.37!; paired t test; t(7) = #1.553; p = 0.164).
Further, we matched task difficulty in the contrast change
detection task ("79.4% correct) to performance in the orienta-
tion discrimination task during the post-training fMRI session
to ensure that the two post-training scanning sessions did
not differ in task difficulty.
MVPA analysis across cortical layers in V1 showed that the

learning-dependent changes we observed in orientation-spe-
cific representations in superficial layers were maintained
when participants performed the control task. In particular, a
two-way repeated-measures ANOVA (orientation 3 task) on
the MVPA accuracy showed a significant main effect of orien-
tation (F(1,7) = 19.140; p = 0.003) in superficial V1 layers

Figure 4. MVPA Results before and after Training across V1 Layers
MVPA accuracy across V1 layers for the trained and untrained orientations presented at the trained location. Dotted line indicates MVPA accuracy at 50%

chance. To further validate our MVPA results, we trained the classifier after shuffling the labels of the training dataset for 5,000 times. This analysis returned

accuracies that did not differ significantly (all p > 0.618; false discovery rate [FDR] corrected), suggesting that our MVPA analysis extracted reliable voxel pattern

information from the ROIs tested. Error bars indicate standard error of the mean across participants. See Figures S2 and S3 for the univariate and control an-

alyses, respectively.
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(Figure 5B). Neither the main effect of task (F(1,7) = 2.608; p =
0.150) nor the interaction (F(1,7) = 0.082; p = 0.783) were sig-
nificant. We did not find any significant main or interaction ef-
fects in the deeper or middle layers of V1 (all p > 0.071). These
results suggest that learning-dependent changes in orienta-
tion-specific representations in superficial V1 layers are inde-
pendent of task context, consistent with previous neurophys-
iology results [9] showing learning-dependent changes in
neural tuning in primary visual cortex during a fixation task.

Learning-Dependent Changes in Intraparietal Cortex
We next considered learning-dependent changes in decision-
making-related regions [6, 38] in the parietal cortex. In particular,
we focused on IPS1 and IPS2 that have been implicated in
perceptual decision making [38]. Using MVPA, we tested for
learning-dependent changes in orientation representations
across cortical depths. Figure 6 shows learning-dependent
changes for the trained compared to the untrained orientation
(i.e., increased MVPA accuracy for the trained orientation in the
trained location) in middle rather than superficial or deeper
layers. In particular, we observed a significant orientation 3

session interaction in middle layers of IPS (F(1,12) = 6.324; p =
0.027), but not in superficial (F(1,12) = 0.502; p = 0.492) or deeper
(F(1,12) = 2.452; p = 0.143) layers. Further, we observed signifi-
cantly increased MVPA accuracy after training for the trained
orientation in the middle (t(12) = #3.432; p = 0.005), but not su-
perficial (t(12) = 0.392; p = 0.702) or deeper (t(12) = #1.137;
p = 0.278) layers, suggesting enhanced discriminability for the
trained orientation in middle layers. In contrast, we did not
observe any significant learning-dependent changes for the un-
trained location. In particular, there was no significant orientation
3 session interactions across IPS layers (superficial layers:
F(1,12) = 0.136, p = 0.718; middle layers: F(1,12) = 1.053, p =
0.325; deeper layers: F(1,12) = 1.628, p = 0.226). Comparing
learning-dependent changes in visual and posterior parietal cor-
tex showed dissociable results. That is, we observed learning-
dependent changes in superficial layers of V1 and middle layers
of posterior parietal cortex, as indicated by a significant ROI (V1;
IPS) 3 session 3 layer interaction for the trained orientation
(repeated-measures ANOVA; F(2,24) = 5.872; p = 0.008), but
not the untrained orientation (repeated-measures ANOVA;
F(2,24) = 1.933; p = 0.167).

Figure 5. Learning-Dependent Changes in V1
(A) MPI ([post-test accuracy # pre-test accuracy]/pre-test accuracy 3 100%) for the trained and untrained orientations across V1 layers. The left panel shows

significantly higher MPI for the trained than the untrained orientation at the trained location in superficial V1 layers (t(12) = 3.218; p = 0.007). The right panel shows

no significant differences in MPI across layers for orientations presented at the untrained location. In particular, there was no significant difference in MPI for

trained versus untrained orientations in the superficial layers (t(12) = 0.396; p = 0.699).

(B) MVPA accuracy for the trained and untrained orientation at the trained location after training (post-test) compared to the control experiment in superficial

layers of V1. Dotted line indicates MVPA accuracy at 50% chance. Error bars indicate standard error of the mean across participants. See Figure S4 for learning-

dependent changes across visual areas.
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Informational Connectivity Analysis
Our results so far showed learning-dependent changes in orienta-
tion-specific representations in the superficial layers of V1 and
middle layers of IPS, suggesting that learning modifies output
rather than input signals in visual cortex and input signals in pos-
terior parietal cortex. Based on these results, we asked whether
learning enhances functional connectivity between visual and
posterior parietal cortex. To test this hypothesis, we employed
an informational connectivity analysis [36] and tested whether
V1 and IPS shared synchronous discriminability of multi-voxel
patterns that changed with training. Consistent with previous
studies [19, 20, 26], we contrasted two possible functional con-
nectivity mechanisms: (1) feedforward learning, as indicated by
changes in connectivity between superficial V1 layers andmiddle
IPS layers, and (2) feedback learning, as indicated by changes in
connectivity between V1deeper layers and IPS deeper layers.We
did not test functional connectivity between V1 superficial layers
and deeper layers of higher areas, as it is known to relate to both
feedback and feedforward processing (Figure 1).
Following previous studies employing an informational con-

nectivity analysis [36], we interrogated the MVPA classifiers for
each layer and scanning session and extracted the distance
from the hyperplane for the mean pattern signal per block. For
each layer per ROI, we generated a time course of distance
values across blocks, regressed out the distance from other
layers within the ROI, and calculated the partial Spearman corre-
lation between V1 and IPS layers across blocks (Figure 7A).
Our results showed enhanced feedforward compared to
feedback connectivity between V1 and IPS after training. A
repeated-measures ANOVA (Fisher’s z) showed a significant
pathway (feedforward and feedback) 3 orientation (trained
versus untrained) 3 session (pre-test and post-test) interaction
(F(1,12) = 8.912; p = 0.011; Figure 7B).
In particular, we observed enhanced feedforward connectivity

between superficial V1 layers and middle IPS layers after
training. A repeated-measures ANOVA (Fisher’s z) showed a
significant orientation 3 session interaction (F(1,12) = 5.771;
p = 0.033) but no significant main effect of orientation
(F(1,12) = 1.218; p = 0.291) or session (F(1,12) = 2.326; p =
0.153). Post-hoc comparisons showed enhanced connectivity
for the trained orientation (t(12) = #2.599; p = 0.023), but not
the untrained orientation (t(12) = 1.560; p = 0.145). In contrast,
we did not observe any significant learning-dependent changes

Figure 6. Learning-Dependent Changes in
IPS
MPI across IPS layers for the trained and untrained

orientations presented at the trained location.

The results showed significantly higher MPI for

the trained than the untrained orientation

at the trained location in the middle IPS layers

(t(12) = 2.861; p = 0.014), but not in superficial

(t(12) =#0.695; p = 0.500) or deeper (t(12) = 1.382;

p = 0.192) layers. Error bars indicate standard

error of the mean across participants.

in feedback connectivity between deeper
V1 and deeper IPS layers (orientation 3
session interaction: F(1,12) = 0.587, p =

0.458; main effect of session: F(1,12) = 0.299, p = 0.595; main
effect of orientation: F(1,12) = 1.223, p = 0.290). This enhanced
connectivity between superficial layers of V1 and middle layers
of IPS after training suggests that training alters feedforward in-
formation processing from sensory to decision-related areas to
support learning-dependent improvement in the fine orientation
discrimination task.

DISCUSSION

Despite the key role of learning in optimizing perceptual deci-
sions, an ability known as perceptual learning, we lack a mech-
anistic account of how training molds the adult human brain.
Evidence on experience-dependent plasticity mechanisms re-
mains controversial, with some studies suggesting that learning
modifies sensory encoding and others proposing top-down in-
fluences via feedback [5, 39, 40]. Conventional brain imaging
techniques have been unable to differentiate these possibilities
due to limited spatial resolution [18]. Here, we capitalize on the
sub-millimeter resolution of 7T laminar fMRI to interrogate
perceptual plasticity mechanisms across cortical depths that
are known to be associated with dissociable neural computa-
tions. Our results propose a key role for recurrent experience-
dependent plasticity in perceptual learning.
Combining 7T laminar fMRI with MVPA, we demonstrate

enhanced decoding of orientation-specific representations in
superficial rather than middle layers of V1 that are known to be
involved in the processing of visual input [26]. Previous fMRI
studies using multi-voxel pattern classification approaches
have shown that learning fine feature discriminations increases
the discriminability of neural representations [12, 41]. Other brain
imaging studies [11, 13, 42, 43] have shown learning-dependent
changes in overall BOLD signal in V1 or at earlier thalamic stages
of visual input processing [44]. These fMRI results have been in-
terpreted broadly in support of an early neural locus of percep-
tual learning. However, we still lack a mechanistic account of
experience-dependent plasticity in the human brain, as fMRI at
standard resolution does not allow us to discern encoding
from readout processes. Our layer-specific fMRI results propose
that learning alters processing in superficial layers rather than
input in middle V1 layers. It is unlikely that this learning-depen-
dent plasticity in superficial layers relates to stronger orientation
selectivity in superficial V1 layers, as recent quantitative
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measurements show nearly uniform distribution of orientation
selectivity across V1 layers than reported in early physiological
studies [45]. Further, we found that MVPA accuracy did not differ
significantly across layers before training, suggesting that
learning-dependent changes in superficial V1 layers could not
be due to differences in orientation selectivity across V1 layers.

These learning-dependent changes in superficial layers may
reflect top-down influences via feedback [46, 47]. That is, neu-
rons with cell bodies in deeper layers and dendrites projecting
to the superficial layers result in learning-dependent changes
in BOLD signals in superficial layers [20, 21]. However, this inter-
pretation is less likely for three main reasons. First, we did not
observe learning-dependent changes in deeper V1 layers that
are known to receive long-range feedback. Second, our func-
tional connectivity analysis showed enhanced feedforward
rather than feedback connectivity in occipito-parietal circuits.
Third, consistent with a previous physiological study [9],
learning-dependent changes in superficial V1 layers were main-
tained independent of task context; that is, these changes were

evident not only when participants performed the orientation
discrimination task but also when they performed a contrast-
detection task (i.e., control experiment) that does not involve
task-related feedback on the trained stimulus dimension (i.e.,
orientation). It is possible that top-down influences, via feedback
connections to superficial layers, play a role in shaping visual
feature templates at earlier than later stages of training on the
discrimination task [48]. However, interrogating the representa-
tions of trained features after training reveals learning-dependent
changes in superficial layers that are independent of task
context.
An alternate interpretation is that orientation-specific,

learning-dependent changes in superficial V1 layers are due to
iso-orientation inhibition [49], that is, suppression of neurons
that are selective for the same orientation across columns.
Iso-orientation inhibition is shown to be more pronounced in
superficial layers and support orientation tuning via horizontal
connections between V1 columns [19, 23, 24, 50]. Thus, training
may enhance neural tuning for the trained orientations through

Figure 7. Informational Connectivity Analysis
(A) Schematic illustration of the procedure followed for the MVPA-based functional connectivity analysis. For each ROI and block, we calculated the distance to

the classifier hyperplane (indicated by the dotted line) as index of pattern discriminability (left panel). Green and blue dots indicate test patterns from different

classes (i.e., trained or untrained versus control orientations). For each ROI, we calculated a time series of distances across blocks during each scanning session.

Spearman correlation was used to calculate covariance between time series across ROIs (right panel).

(B) Learning-dependent changes (Fisher’s z post- minus pre-test) in functional connectivity between superficial V1 layers and middle IPS layers (feedforward

connectivity) and between deeper V1 and IPS layers (feedback connectivity) for the trained and untrained orientations. Error bars indicate standard error of the

mean across participants.
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iso-orientation suppression in superficial V1 layers. These results
are consistent with computational models proposing that
training sharpens neural tuning by altering recurrent connections
(i.e., reducing excitatory or increasing inhibitory connections)
near the trained orientation [25, 51] and neurophysiological
studies showing changes in orientation tuning in superficial V1
layers due to training in visual cortex [9, 10]. Further horizontal
connections in superficial V1 layers have been suggested to sup-
port recurrent processing in the context of figure-ground seg-
mentation [26] and experience-dependent plasticity in the
context of contour integration [2]. In particular, boundary detec-
tion was evidenced in superficial layers"30ms after the initial vi-
sual response in themiddle layers [26]. Future studies combining
laminar fMRI with EEG in humans have the potential to test
whether learning-dependent changes in superficial layers follow
early sensory processing in middle layers, revealing the dy-
namics of recurrent experience-dependent plasticity [26, 27].
It is important to note that, despite the advances afforded by

laminar fMRI, GE-EPI is limited by vasculature contribution to
BOLD signals at the cortical surface, resulting in loss of spatial
specificity [33]. Here, we demonstrate layer-specific, learning-
dependent changes following several control analyses for these
potential confounds, suggesting that our results are unlikely to
be confounded by vasculature-related artifacts. Our results are
consistent with previous laminar imaging studies showing BOLD
effects in superficial layers in a range of tasks [28, 29, 46, 47]
and could not be simply attributed to differences in attention due
to task difficulty, as participant performancewasmatched across
sessions (pre- versus post-training). Future work could exploit
recent advances in cerebral blood volume (CBV) imaging using
vascular space occupancy (VASO) [52] to enhance the spatial
specificity of laminar imaging in the human brain.
Extending beyond the visual cortex, we demonstrate learning-

dependent changes in posterior parietal cortex regions (IPS) that
have been suggested to play a key role in perceptual decision
making [6]. In particular, we observed learning-dependent
changes in fMRI activation patterns in middle layers of IPS re-
gions, suggesting that training alters input signals to posterior
parietal cortex. These results are consistent with previous neuro-
physiological [6] and human-brain-imaging studies [38] that
show learning-dependent changes in intraparietal cortex for
perceptual decision making. Our findings provide new insights
in understanding the finer scale circuit that mediates experi-
ence-dependent plasticity across human brain systems,
involving both sensory and decision-related areas [53].
Further, we interrogated learning-dependent changes in func-

tional connectivity [38, 54]. We tested whether training alters the
functional connectivity within this circuit at the finer scale of
layer-to-layer interactions. Computational approaches have pro-
posed that training strengthens the connections between the
most informative neurons in sensory areas and decision-related
areas via Hebbian learning, resulting in re-weighting of sensory
signals in visual cortex [5]. In contrast, the reverse hierarchy
theory proposes that learning is implemented by top-down influ-
ences on visual processing via long-range feedback from down-
stream areas [17]. To test these hypotheses, we interrogated the
layer-to-layer functional connectivity between visual and poste-
rior parietal cortex that allows us to compare feedforward versus
feedback processing based on known anatomical connectivity

models [19, 20, 55]. We demonstrate that learning strengthens
feedforward connectivity between superficial V1 layers and mid-
dle layers of IPS, consistent with previous studies showing that
ascending projections of V1 originate predominantly from the su-
perficial layers and ascending projections to IPS mainly termi-
nate in middle layers [19, 20, 26]. In contrast, we did not find
any significant changes in feedback connectivity between
deeper V1 and deeper IPS layers, consistent with the lack of sig-
nificant learning-dependent changes in deeper V1 layers. Taken
together, these results suggest that learning fine feature differ-
ences is implemented by re-weighting mechanisms of visual
plasticity rather than long-range feedback from decision related
to visual areas. This is consistent with recurrent models suggest-
ing that training alters feedforward connectivity, reducing noise
correlations and improving probabilistic inference in visual cor-
tex [56]. Corroborating evidence comes from the results of our
control experiment showing that learning-dependent changes
in superficial V1 layers were maintained when observers per-
formed a contrast change detection task that does not involve
orientation judgments and therefore does not engage decision-
related feedback on the trained stimulus dimension.
In sum, combining UHF 7T imaging with a classic perceptual

learning paradigm, we provide evidence for recurrent mecha-
nisms of experience-dependent plasticity that gate perceptual
decision making in the adult human brain. These mechanisms
support re-weighting of input signals in the visual cortex that
are readout by posterior parietal cortex to inform improved
perceptual decisions due to training. Interrogating experience-
dependent plasticity at the finer resolution afforded by UHF im-
aging using training paradigms that have been extensively tested
in both animals and humans, we provide the first insights in
bridging the gap between animal studies of micro-circuit
plasticity and human fMRI studies of macro-scale network re-
organization. Understanding the mechanisms of experience-
dependent plasticity in the adult brain across scales and species
is critical for designing effective training interventions that sup-
port lifelong learning and adaptive behavior.
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to Zoe Kourtzi (zk240@cam.ac.uk).

Materials Availability
This study did not generate any unique reagents.

Data and Code Availability
Data files have been uploaded on the Cambridge Data Repository: https://doi.org/10.17863/CAM.55363

Further information and requests for the raw datasets and code generated by this study should be directed to andwill be fulfilled by
the Lead Contact, Zoe Kourtzi (zk240@cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fifteen participants (7 females; mean age: 27.87 years and SD: 3.83 years) took part in this study. Data from two participants were
excluded from further analysis due to excessive head movement (See MRI data analysis) and technical issues during acquisition. As
there are no previous UHF imaging studies on perceptual learning, we determined the sample size based on a previous 3T fMRI study
on perceptual learning using an orientation discrimination task (n = 12) [12]. All participants had normal or corrected-to-normal vision,
and were right-handed. Participants were naive to the aim of the study, gave written informed consent and received payment for their
participation. The study was approved by the University of Cambridge Ethics committee.

METHOD DETAILS

Stimuli and Apparatus
Stimuli comprised oriented sinusoidal gratings that were presented at an eccentricity of 5!, in the left or the right visual field against a
uniform gray background. Gratings of random phase had a fixed diameter of 6!, contrast of 0.8, spatial frequency of 1 cycle/degree.
The contrast decreased to zero over the outer 0.5! radius of the gratings.

Experiments were controlled usingMATLAB and Psychophysics toolbox 3.0 [57, 58]. For the behavioral sessions, stimuli were pre-
sented on a 21-inch CRT monitor (1600 3 1200 pixel resolution, 85 Hz frame rate) at a distance of 110 cm. Gamma correction was
applied to the monitor. For the fMRI scans, stimuli were presented using a projector and amirror setup (19203 1080 pixel resolution,
100 Hz frame rate) at a viewing distance of 110 cm. Angular stimulus size was the same across behavioral and fMRI sessions.

Experimental design
The study comprised a pre-test (2 sessions, 1 behavioral test, 1 fMRI test), a training (5 sessions), a post-test (2 sessions, 1 behavioral
test, 1 fMRI test) and a control (2 sessions: 1 training, 1 fMRI test) phase (Figure 2A). All training and post-test sessions were con-
ducted on consecutive days.

We employed a two-interval forced choice (2IFC) orientation discrimination task (Figure 2B). Each trial began with a fixation cross
for 200 ms followed by the sample and test gratings that were presented sequentially for 200 ms each and separated by a 600 ms

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Data file This paper https://doi.org/10.17863/CAM.55363

Software and Algorithms

MATLAB https://www.mathworks.com/products/matlab.html; RRID: SCR_001622

Psychtoolbox http://psychtoolbox.org/; RRID: SCR_002881

FreeSurfer http://surfer.nmr.mgh.harvard.edu/; RRID: SCR_001847

ITK-SNAP http://www.itksnap.org/; RRID: SCR_002010

BrainVoyager http://www.brainvoyager.com/; RRID: SCR_013057

Wang’s Atlas https://hub.docker.com/r/nben/occipital_atlas/

LIBSVM Toolbox http://www.csie.ntu.edu.tw/?cjlin/libsvm/; RRID: SCR_010243
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inter-stimulus interval (ISI). Participants were asked to fixate and report (by key press) within 1270ms after the onset of the test grating
whether it was tilted clockwise or counter-clockwise relative to the sample stimulus.
Participants’ performance in the task was measured using a 3-down-1-up staircase with 15 reversals converging at 79.4% per-

formance. The reference orientation for the trained and untrained stimuli was 55! or 125!. We added a uniformly distributed random
jitter within ± 5! to the reference orientation across trials to ensure that participants compared two gratings in each trial, rather
than the test grating to a fixed reference orientation. The training reference orientation (55! versus 125!) was counterbalanced across
participants. Participants were tested with a control orientation (0!, vertical) that differed equally from the trained and untrained orien-
tation (55! or 125!). This allowed us to test orientation-specific pattern changes in fMRI signals due to training (i.e., learning-depen-
dent changes to the trained versus untrained orientation), by comparing separately the trained versus the untrained orientations to
the control orientation.

Behavioral Tests
To familiarize participants with the task before testing, each participant performed a 30-trial practice run (5 trials per condition, i.e.,
three different reference orientations at two different locations) using a fixed above-threshold angle difference (8!). For both the pre-
and post-training test, participants performed the orientation discrimination task for 12 test staircase runs (2 runs per condition in
random order). For each condition, the starting angle difference between sample and test stimulus for the first run was 5!. For the
second run, the starting angle difference was determined by the threshold in the preceding run. The discrimination threshold for
each condition was the mean threshold across two runs. No feedback was provided to the participants during the test phase.

Behavioral Training (5 sessions)
We trained participants on the orientation discrimination task (16 staircases per session, "1 h) with gratings presented at the same
orientation and location throughout training. The starting angle difference between sample and test stimuli for the first staircase of the
first training session was 5!. For the remaining staircases, the starting angle difference was determined by the threshold of the pre-
ceding staircase. Training location (i.e., left versus right visual field) and orientation (i.e., 55! versus 125!) were counterbalanced
across participants. Participants were given auditory error feedback per trial.

fMRI sessions
Before and after training in the lab, participants completed 8-10 runs of the orientation discrimination task during scanning. For each
participant, we also collected data from an anatomical scan and a retinotopic mapping scan.
For the orientation discrimination task, each run started with a fixation block (12.36 s) followed by one block for each of the six

conditions and a fixation block. This sequence of fixation and condition blocks was repeated four times in each run. Each condition
block lasted 12.36 s and comprised gratings presented at the trained, untrained or control orientation at one of two locations (trained
versus untrained location). The order of orientations was randomized across the six condition blocks and the stimulus location alter-
nated between blocks. For each block, participants completed five trials of the orientation discrimination task. The task parameters
(i.e., sample and test duration) were the same as for the behavioral tests and no feedback was provided to the participants. The fixed
angle difference between sample and test stimuli for each condition was determined by the preceding behavioral session. This
allowed us to match task difficulty ("79.4% correct) before and after training.

Control experiment
To test the task specificity of the learning effect, eight participants completed an additional training and fMRI session on consecutive
days to ensure that learning wasmaintained during a control task. The procedure for this control-task session was identical to that for
the post-training scan, with the exception that participants performed a contrast change detection task. Participants were required to
press a key within 1000 ms of detecting a contrast change on the stimuli. The magnitude of contrast change was estimated for each
participant during the anatomical scan to ensure similar task difficulty ("79.4% correct) between the orientation discrimination task
and the contrast detection task. The estimated magnitude was fixed and used throughout the control-task fMRI session.

MRI data acquisition
Imaging data were acquired at theWolfson Brain Imaging Centre, University of Cambridge, on a Siemens 7T Terra scanner with a 32-
channel phased-array head coil (Nova Medical, Inc., Wilmington, MA, USA). For each participant, anatomical images were acquired
using MP2RAGE T1-weighted sequence (TR = 5000 ms, TE = 2.56 ms, FOV = 208 3 208 mm2, resolution 0.65 3 0.65 3 0.65 mm3,
number of slices: 240, slice orientation: sagittal). Functional scans were acquired using a 2D Gradient Echo, Echo Planar Imaging
(GE-EPI) sequence [59] (TR = 2060 ms, TE = 26.4 ms, FOV = 1483 148 mm2, flip angle: 70!, resolution 0.83 0.83 0.8 mm3, number
of slices: 56, partial Fourier = 6/8, GRAPPA factor = 3, Multi-Band factor = 2, bandwidth = 1034 Hz/Pixel, echo spacing = 1.09 ms).
The field of view covered occipito-temporal and posterior parietal areas; manual shimming was performed prior to the acquisition of
the functional scans.

Behavioral data analysis
Performance was measured by the 3-down-1-up staircase with 15 reversals. The mean angle difference of the last 8 reversals was
taken as the threshold of each staircase run. The measured orientation discrimination thresholds were used as the dependent factor.
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Using a within-subject factorial design, we manipulated three independent factors, the reference orientation (trained and untrained
orientation), stimulus location (trained and untrained location) and test session (pre-test, post-test), to evaluate the learning effect and
learning specificity. Further, we calculated themean percent improvement index (MPI, (pre-test threshold – post-test threshold) / pre-
test threshold 3 100%)) for each condition. For statistical analysis, we used repeated-measures ANOVAs to compare across
conditions.

MRI data analysis
Anatomical data analyses
T1-weighted anatomical data was used for coregistration and 3D cortex reconstruction. Grey and white matter segmentation was
obtained on the MP2RAGE images using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) and manually improved for the regions
of interest (i.e., V1, V2, V3, V4, and IPS) using ITK-SNAP (http://www.itksnap.org). The refined segmentation was used to obtain a
measurement of cortical thickness. Following previous studies, we assigned voxels to three layers (superficial, middle, deeper) using
the equi-volume approach [60, 61] as implemented in BrainVoyager (Brain Innovation, Maastricht, the Netherlands). This approach
has been shown to reduce misclassification of voxels to layers, in particular for regions of interest presenting high curvature. Infor-
mation from the cortical thickness map and gradient curvature was used to generate four grids at different cortical depths (ranging
from 0: white matter, to 1: gray matter). Mapping of each voxel to a layer was obtained by computing the Euclidean distance of each
gray matter voxel to the grids: the two closest grids represent the borders of the layer to which a voxel is assigned (Figure 3B). The
anatomical image was aligned to the functional data using the boundary-based registration [62]. We assessed the alignment and
manually corrected if necessary. In particular, we checked: (1) the segmentation of the anatomical data; (2) the distortion correction
of the functional data; (3) whether truncating the functional data improved the registration.
Functional data analyses
The GE-EPI functional data were analyzed using BrainVoyager (version 20.6, Brain Innovation, Maastricht, the Netherlands) and
customMATLAB (TheMATHWORKS Inc., Natick, MA, USA) code. The first two volumes at the beginning of each run were discarded
to ensure that the longitudinal magnetization reached steady state. Preprocessing of the functional data involved three steps starting
with correction of distortions due to non-zero off-resonance field; that is, at the beginning of each functional run, five volumes with
inverted phase encoding direction were acquired and used to estimate a voxel displacement map that was subsequently applied to
the functional data using COPE (Correction based onOpposite Phase Encoding, BrainVoyager, Brain Innovation). The distortion-cor-
rected data underwent slice-timing correction, head motion correction (the single band image acquired at the beginning of the first
run was used as the reference in the alignment), high-pass temporal filtering (using a GLM with Fourier basis set at 2 cycles) and
removal of linear trends. We then aligned the functional data across sessions. To validate the alignment, we calculated the mean
EPI image of each functional run for each region of interest (ROI) and estimated the spatial correlation between these mean EPI
images. We performed manual adjustment of the alignment if the spatial correlation was below 0.85 and excluded data from one
participant for whom the alignment could not be improved manually [63].
Regions of Interest definition
We used the data from the retinotopic mapping scan to identify visual areas based on standard phase-encoding methods. Partici-
pants viewed rotating wedges that created traveling waves of neural activity [64, 65]. Due to limited coverage during acquisition, area
V4was identified for 8 of the 13 participants included in the analysis. Thus, for further analyses we combined the data from V2, V3 and
V4 for each individual participant. Further, we defined regions in the intraparietal sulcus (IPS1, IPS2) given their functional relevance
for perceptual learning [6]. Intraparietal regions (IPS1 and IPS2) were defined for each participant based on anatomical templates
provided by Benson (https://hub.docker.com/r/nben/occipital_atlas/) [66]. This procedure uses the individual participant-based seg-
mentation obtained with FreeSurfer and an anatomical probabilistic template, to estimate the best location for the region of interest
(i.e., IPS). Each IPS subregion was subsequently inspected to ensure consistent definition across participants; that is, we checked
whether the ROI (1) was located at the posterior part of the intra-pariental sulcus, (2) covered only gray matter, rather than white mat-
ter, or CSF.

For each of the visual cortex ROIs, we modeled BOLD signals using a GLM with two regressors (i.e., left versus right visual field)
and included the estimated head motion parameters as nuisance regressors. The resulting t-statistical map was thresholded
(t = 2.58, p = 0.01) to select voxels within each ROI that responded strongly to the lateralized stimulus presentation, consistent
with location specificity in visual cortex. As stimulus-related activation was bilateral in IPS, we selected voxels that responded to
all stimulus conditions irrespective of location (i.e., stimuli versus fixation, t = 1.64, p = 0.10). We defined separate IPS ROIs for
the trained versus untrained location.
Correcting for vasculature-related effects
Voxel selection within each ROI was further refined by excluding voxels that were confounded by vasculature effects that are known
to contribute to a superficial bias in themeasured BOLD signal; that is, increased BOLDwith increasing distance fromwhitematter. In
particular, it has been shown that the BOLD signal measured using GE-EPI (i.e., T2* weighted) is confounded by macro- and micro-
vasculature signals [32, 67, 68]. The macro-vasculature contribution is due to veins penetrating the gray matter and running through
its thickness, as well as large pial veins situated along the surface of the gray matter [69]. This results in increased sensitivity (i.e.,
strong BOLD effect) but decreased spatial specificity of the measured signal. The latter can be understood by the mechanics of
the draining veins carrying deoxygenated haemoglobin downstream of the true neuronal site of neural activation, leading to a
response spatially biased toward the pial surface, an effect known as superficial bias.
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Here, we took the following approach to reduce superficial bias due to vasculature contributions. First, following previous work
[70], we computed the temporal signal to noise ratio (tSNR) for each voxel in each ROI (V1 V2, V3, V4 and IPS respectively). We
used tSNR to identify voxels near large veins that are expected to have large variance and low intensity signal due to the local con-
centration of deoxygenated haemoglobin resulting in a short T2* decay time (i.e., dark intensity in a T2* weighted image). We iden-
tified voxels with low tSNR, checked their correspondence with voxels of lower intensities on the T2* weighted images. Second, it has
been shown that high t-values on a fMRI statistical map are likely to arise from large pial veins [71, 72]. Therefore, voxels with low
tSNR values or t-score values above the 90th percentile of the t-score distribution obtained by the GLM described above were
removed from further analysis. We used these two approaches to correct the BOLD signal from confounding vasculature effects.
Univariate analysis
For each participant, test session, run and condition, we extracted the z-scored fMRI responses between the 4th and 8th TR (i.e., 6.18
– 14.42 s) after block onset. This time window captured the peak of the hemodynamic responses to the visual stimuli. The normalized
fMRI responses were averaged across time points, blocks and runs for each condition and each session. Repeated-measures
ANOVA was used to test the univariate difference across conditions.
Multivariate pattern analysis
We usedmultivariate pattern analysis (MVPA) to decode: a) trained versus control orientation, b) untrained versus control orientation.
For each ROI and participant, we calculated per voxel a t-score statistic by comparing activity for stimuli that were presented left
versus right of the fixation (V1) or activity for task versus fixation (IPS). We used this statistic to rank the voxels within each ROI
and selected voxels (500 for visual areas; 200 voxels for IPS) with the higher t-score to include in theMVPA, as classification accuracy
saturated across all participants for these voxel pattern sizes in the corresponding regions (Figure S4). We used the same number of
voxels (i.e., 200 voxels) when comparing data between V1 and IPS and for the informational connectivity analysis. This voxel selection
procedure ensured that comparisons of MVPA accuracy could not be confounded by varying number of voxels across participants.
We then extracted mean normalized fMRI responses between 4th to 8th TR (i.e., 6.18 – 14.42 s) after block onset for this pattern of
voxels per ROI, participant and test session. We trained a linear classifier using LIBSVM (http://www.csie.ntu.edu.tw/"cjlin/libsvm/)
implemented in MATLAB to discriminate: a) the trained from the control orientation, b) the untrained from the control orientation. As
both the trained and untrained orientation differed equally from the control orientation ("55!), we hypothesized that differences in the
accuracy between these two classification tasks would be due to training rather than stimulus differences. We computed classifica-
tion accuracy using a leave-one-run-out cross-validation. That is, we divided the dataset into training and test data with maximum 72
training patterns (for n = 7 participants with 8 runs) and 8 patterns for the test run. We averaged the classification accuracy across
folds, separately for each test session. We used repeated-measures ANOVAs to assess differences in classification accuracy across
conditions (orientation 3 session). Similar to the MPI for behavioral data, we defined the MPI for decoding accuracy as (post-test
accuracy – pre-test accuracy) / pre-test accuracy 3 100%).
Further, we performed a correlation-based pattern analysis [37] to consolidate our MVPA results. In the correlation-based pattern

analysis, the data and voxels used were identical to those used in the MVPA analysis. We divided the dataset into training and test
data and performed a leave-one-run-out cross-validation. For each dataset, we calculated themean response of each orientation for
each voxel. We then calculated the Spearman correlation across voxels and transformed the correlation coefficients using Fisher’s
z-transform.We hypothesized that the correlation coefficient would be higher for data from the training and test set that related to the
same orientation (i.e., trained-trained orientation) than different orientations (i.e., trained-control orientation). We used the difference
between the same and different orientations to index the information contained in each ROI.We used repeated-measures ANOVAs to
examine differences across conditions (orientation 3 session).
Informational Connectivity analysis
We used Informational Connectivity (IC) to identify layers that share synchronized discriminability of activity related to stimulus-spe-
cific multi-voxel pattern information [36, 73, 74]. We examined intercortical IC based on shared changes (fluctuations) in pattern dis-
criminability over time, as this approach has been shown to bemore sensitive than univariate functional connectivity. To track the flow
of multivariate information across time (i.e., across blocks), we measured the fluctuations (covariance) in MVPA discriminability by
calculating distance information from the classification hyperplane (Figure 7A). In particular, we selected 200 voxels with the higher
t-score and used the same multivoxel training versus test patterns as in the MVPA analysis. For each ROI and layer, we extracted
distance information for the test data per block from the trained classifiers. We calculated layer-specific connectivity by partial
Spearman correlation between the fold-wise distance of different layers; that is, for a given layer, we regressed out the distance in-
formation from other layers within each ROI. We transformed the correlation coefficients using Fisher’s z-transform and conducted
repeated-measures ANOVA to compare across conditions.
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Figure S1.  Behavioral results. Related to Figure 2D.   

Mean performance across participants before and after training (pre-, post-test) at ~79.4% threshold for the 

trained and untrained orientations presented at the trained and untrained locations. Error bars indicate 

standard error of the mean across participants. Gray dots indicate the threshold of each participant. We 

observed learning specificity for the trained orientation at the trained location, as indicated by a significant 

orientation × location × session interaction (repeated measures ANOVA, F(1,12) = 11.858, p = 0.005) and 

a significant orientation × session interaction (F(1,12) = 21.551, p = 0.001) at the trained, but not the 

untrained (F(1,12) = 3.093, p = 0.104) location. Post-hoc comparisons at the trained location showed 

significantly lower threshold for the trained than the untrained orientation after (t(12) = -5.208, p < 0.001), 

but not before (t(12) = 1.264, p = 0.230) training. In contrast, no significant differences between the trained 

and the untrained orientations were observed at the untrained location (pre-test session: t(12) = -1.203, p = 

0.252, post-test session: t(12) = 1.066, p = 0.308). 

 

  



 

Figure S2. Univariate fMRI analysis. Related to Figure 4. 

Mean normalized BOLD before and after training for the trained, untrained and control orientations 

presented at the trained location across V1 layers. Error bars indicate standard error of the mean across 

participants.  

 

 



 

 

Figure S3. Control analyses. Related to Figure 4. 

(A) MVPA accuracy before and after training for the trained and untrained orientations presented at the 

trained location in superficial V1 layers after regressing out the signal from the adjacent voxels in middle 

layers. Dotted line indicates MVPA accuracy at 50% chance. (B) Correlation-based pattern analysis. 

Correlation differences (correlation of mean normalized BOLD across voxels for the same orientation 

minus normalized BOLD for different orientations) for the trained and untrained orientations presented at 

the trained location in superficial V1 layers. Error bars indicate standard error of the mean across 

participants. 

 

 



 

Figure S4. MVPA before and after training across visual areas. Related to Figure 5. 

MVPA accuracy before and after training for different voxel patterns (from 100-500 voxels) for the trained 

orientation presented at the trained location across layers of V1, V2, V3, V4. We observed similar learning-



dependent changes in superficial layers across visual areas. Two-way repeated measures ANOVAs (ROI × 

session) showed a significant main effect of session for pattern size of 200 (F(1,12) = 7.159, p = 0.020), 

300 (F(1,12) = 7.751, p = 0.017), 400 (F(1,12) = 6.006, p = 0.031) voxels, and a trend for pattern size of 

100 (F(1,12) = 3.743, p = 0.077) and 500 (F(1,12) = 4.587, p = 0.053) voxels. We did not observe any 

significant ROI × session interaction (all ps > 0.269). Further, we did not observe any significant differences 

in MVPA accuracy before vs. after training in middle nor deeper layers (all ps > 0.539). Error bars indicate 

standard error of the mean across participants. 

 
 


