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Abstract

Learning the structure of the environment is critical for interpreting the current scene and
predicting upcoming events. However, the brain mechanisms that support our ability to
translate knowledge about scene statistics to sensory predictions remain largely unknown.
Here, we provide evidence that learning of temporal regularities shapes representations in
early visual cortex that relate to our ability to predict sensory events. We tested the
participants’ ability to predict the orientation of a test stimulus following exposure to
sequences of leftwards or rightwards orientated gratings. Using fMRI decoding, we identified
brain patterns related to the observers’ visual predictions rather than stimulus-driven activity.
Decoding of predicted orientations following structured sequences was enhanced after
training, while decoding of cued orientations following exposure to random sequences did
not change. These predictive representations appear to be driven by the same large-scale
neural populations that encode actual stimulus orientation and to be specific to the learned
sequence structure. Thus, our findings provide evidence that learning temporal structures
supports our ability to predict future events by reactivating selective sensory representations

as early as in primary visual cortex.
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Introduction

Successful everyday interactions entail that we exploit information about the structure of the
environment to interpret the current scene and predict upcoming events. Recent theoretical
work (Geisler 2008; Petrov et al. 2005) suggests that the brain achieves this challenge by
learning through exposure to the environment’s statistics. There is accumulating evidence
that mere exposure to stimuli that co-occur in the environment facilitates our ability to extract
spatial and temporal regularities (for reviews: Aslin and Newport 2012; Perruchet and Pacton
2006). However, the brain mechanisms that mediate our ability to predict upcoming events

based on previous knowledge about the environment’s statistics remain largely unknown.

Previous neuroimaging work has implicated subcortical and medial temporal lobe regions in
the learning of temporal statistics. In particular, the striatum and hippocampus have been
implicated in learning of probabilistic associations (Poldrack et al. 2001; Shohamy and
Wagner 2008) and temporal sequences (Gheysen et al. 2011; Hsieh et al. 2014; Rauch et al.
1997; Rose et al. 2011; Schapiro et al. 2014; Schapiro et al. 2012; Schendan et al. 2003a).
While these brain regions are thought to be involved at the initial stages of training, prefrontal
regions have been shown to engage at later learning stages (Leaver et al. 2009; Pasupathy and
Miller 2005). Despite accumulating evidence for neural circuits involved in learning temporal
regularities, it remains unknown whether this knowledge of temporal statistics facilitates
sensory predictions. Here, we test whether learning of temporal regularities shapes processing
in primary visual cortex and mediates our ability to predict the identity of upcoming visual

stimuli.

We devised a novel paradigm to measure behavioral performance and brain activity related to
visual predictions. First, we tested the participants’ ability to predict the identity of a visual
stimulus (i.e. grating orientation) following learning of temporal sequences. Our behavioral

results demonstrate that observers learn to exploit temporal regularities and improve their
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ability to predict the identity of upcoming stimuli. Second, using fMRI we tested whether
processing in visual cortex is altered after learning of temporal sequences and reflects the
observers’ improved ability to predict the identity of upcoming stimuli. To ensure that we
measured activity related to the observers’ predictions rather than the presented stimuli, we
introduced a long blank interval between the presentation of temporal sequences and the test
stimulus (Figure 1a). Despite the low BOLD signal during this period of no-stimulation, we
were able to decode the orientation predicted by the observers in each trial after training
using multi-voxel pattern classification methods. Further, to test whether decoding accuracy
reflected knowledge of temporal structure, we tested brain activity before and after training
when observers were presented with a random sequence and asked whether a cued orientation
at the end of the sequence matched the test stimulus. Decoding of cued orientations following
a random sequence did not change after training and was weaker than decoding of predicted
orientations following structured sequences, suggesting that learning of temporal structure

shapes predictive representations in primary visual cortex.

Materials and Methods

Participants

Sixteen healthy students from the University of Birmingham (mean age=21+2.6) took part in
the study. All participants were naive to the aims of the study, were right-handed, had normal
or corrected-to-normal vision, had no history of neurological disorders and gave written
informed consent. This study was approved by the University of Birmingham Ethics

Committee.

Stimuli
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Stimuli comprised grayscale sinusoidal gratings that were presented at 9° visual angle, spatial
frequency that ranged from 0.85 to 1 cycles per degree across trials, 100% contrast and
randomized phase. These gratings were rotated +/- 45° from vertical orientation (90°),
resulting in gratings oriented at either 135° (left) or 45° (right). To avoid local position
adaptation, we randomized the phase and jittered the orientation within a range of 2° across
trials. We used these stimuli to generate two sequences, each comprising of 8 gratings, as

shown below (1 refers to a leftwards oriented grating and 2 refers to a rightwards oriented

grating):

Sequence A:21211212

Sequence B: 11212212
As the two sequences predicted different orientations (Sequence A predicted a rightwards
oriented grating; Sequence B predicted a leftwards oriented grating), we generated two more
sequences by replacing leftwards with rightwards orientations and vice versa while keeping
the sequence structure the same. These sequences were as follows:

Sequence A’=12122121

Sequence B>’= 22121121
This manipulation allowed us to counterbalance for the predicted orientations as it resulted in
sequences that had the same structure but predicted different orientations (e.g. A and A’) and
sequences that had different structure but predicted the same orientation (e.g. A and B’). This
ensured that decoding of the predicted orientation was not confounded by the specific
orientations used at each temporal position but related to knowledge of the sequence
structure. Analysis of the behavioral data showed that the participants were equally accurate
across all sequences. This was confirmed by a 2 (sequence type: A vs. B) x 2 (sequence

version: A/B vs. A’/B’) repeated measures ANOVA, which showed that there was no
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significant effect for sequence type (Fy 11 = 0.08, P = .783), sequence version (Fy;; =2.17, P
=.169) nor a significant interaction (£ ;; = 0.06, P = .816).

Each sequence comprised four leftwards and four rightwards oriented gratings. As all
gratings were presented at the same rate, participants could not use stimulus duration to group
elements together or segment the sequences. Further, to ensure that participants did not
perform the task simply by memorizing the first stimulus in the sequence, the orientation of
the first stimulus was randomized in each trial during scanning; that is, for each of the four
sequences half of the trials started with leftwards and the rest with rightwards oriented
gratings. Further, to ensure that participants did not learn the task simply by memorizing the
last orientations in the sequence, the last three stimuli in each sequence pair (A and B; A’ and
B’) were the same across all sequences. These manipulations preserved equal frequency of
appearance for the two orientations across trials. Finally, as the frequency of occurrence was
matched for the two grating orientations in the sequence and the participants did not know
how many items each sequence contained, to perform the task participants were required to
learn the order of the elements in the sequence (i.e. temporal order associations among pairs
or triplets of oriented gratings).

Stimuli were generated and presented using Psychtoolbox-3 (Brainard 1997). For the
behavioral training sessions, stimuli were presented on a 21-inch CRT monitor (ViewSonic
P225f 1280 x1024 pixel, 85 Hz frame rate) at a distance of 45 cm. For the pre and post-
training fMRI scans, stimuli were presented using a projector and a mirror set-up (1280 x
1024 pixel, 60 Hz frame rate) at viewing distance of 64 cm. In order to keep the same visual
angle for both training and scanning sessions, the stimulus size was adjusted according to the

viewing distance.

Design
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All participants (n=16) took part in two pre-training fMRI sessions, 3 to 5 behavioral training
sessions, and two post-training fMRI sessions. Participants were tested in both the prediction
task (1 pre-training and 1 post-training scan) and the control task (1 pre-training and 1 post-
training scan). The order of the scans (prediction vs. control task) was counterbalanced across
participants. After the pre-training scans, all participants were trained for 3 to 5 sessions in
the lab. The number of training sessions was determined by each participant’s performance:
the training stopped when the participant reached performance higher than 80% correct in all
four runs comprising a training session. The post-training scans took place in subsequent days
following the last behavioral training session (one scan in the first and the other in the second
day following the last training session). In addition, the participants completed two scanning

runs of an orientation decoding experiment and two retinotopy localizer scans.

Behavioral training

Participants were trained on the prediction task without feedback for 3-5 sessions.
Participants viewed 16 gratings (each sequence of 8 gratings was repeated twice in a trial)
presented sequentially on a grey background at the centre of the screen. All stimuli were
presented at the same rate; that is, each grating was presented for 0.3 s followed by a fixation
interval of 0.3 s. Participants were asked to respond to a test grating that appeared for 0.3 s
surrounded by a red circle (0.3 s). The test stimulus was preceded by a cue (red dot presented
for 1 s) and was followed by a white fixation dot (1700 ms). Participants were instructed to
respond (the maximum response time was 2000 ms), indicating whether the test image had
the same orientation (left vs. right) as the grating they expected to appear in that position in
the sequence. The test stimulus appeared only in the second repeat of the sequence and its
position was randomized across trials. The test stimulus could appear in any position in the
sequence except the last three positions; stimuli in these positions were the same across trials.

For each run, 50% of the test stimuli were presented at the correct orientation for their
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position in the sequence. After the participant’s response, the remaining gratings in the
sequence were presented until all 16 stimuli had been presented, ensuring that all trials had
the same length. A black cross (1 s) indicated the end of the sequence and the start of a new
trial. There was no feedback across all training sessions. In each training session, participants
performed the prediction task for 4 runs of 40 trials each (20 per sequence type) with a
minimum two-minute break between runs. The number of training sessions was determined
based on performance; the participants stopped training after reaching consistent session

accuracy above 80% (all training runs within one session had to be above 80%).

After each training session, the participants were asked to complete a debriefing
questionnaire with the following questions: 1) Please describe any strategies you may have
used when responding to this task 2) How many of your responses do you think that were
correct? (1 to 5, from ‘few correct’ to ‘most correct’); 3) How did you find the task? (1 to 5,
from ‘very difficult’ to ‘very easy’); 4) How tired did you feel at the end of each run? (1 to 5,
from ‘very tired’ to ‘not tired at all’); 5) How many different sequences of stimuli do you
think that were presented? In addition, after the last training session, the participants were

asked to write down the sequences they thought that were presented during the experiment."

fMRI design

The participants took part in 2 pre- and 2 post-training scans: one pre- and one post-training
scan for the prediction task and one pre- and one post-training scan for the control task. The
order of the scans was counterbalanced: half of the participants did the prediction task in the
first pre- and post-training scan session, whereas the other half started with the control task.
In addition, the participants completed two runs of an orientation decoding experiment and

two retinotopy localizer scans (Polar angle and Eccentricity).
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Prediction task scan (Figurela): Participants completed seven to nine runs (12 trials per run)
of the prediction task per scan session. Each run followed an event-related design comprising
12 trials and a fixation block (15 s) at the beginning and end of the run. Participants were
presented with all four sequences used for training. Each sequence was repeated once per trial
(comprising 8 stimuli) followed by a test stimulus. For each trial (28.5 s long), a sequence of
eight leftwards (135°) or rightwards (45°) oriented gratings was presented. Each grating was
presented for 0.25 s followed by fixation for 0.2 s. The sequence of gratings was followed by
a fixation period (11.6 s), a cue (black square, 0.5 s), a test grating (0.5 s) and a red dot (2 s)
before the start of the next trial. The participants were instructed to pay attention to the
sequence, and respond whether the orientation of the test grating matched the orientation they
expected to follow from the preceding sequence. To ensure that all participants viewed the
test grating for the same duration and there were no differences in reaction time across
participants, participants were instructed to delay their response until the red dot appeared

after the test grating. After each trial, there was a fixation period of 10.5 s.

To acquire adequate data (i.e. number of trials) for the fMRI analysis within the time
constraints of the scanning sessions, we used shorter sequences (single sequence comprising
8 stimuli) during scanning (instead of two repeats of the same 8-item sequence comprising in
total 16 stimuli during training). That is, during scanning participants were required to predict
the orientation of the stimulus in the 9™ temporal position of the trained sequences. Our
experiential design during training (i.e. same presentation duration across stimuli, variable
temporal test position during training) made it unlikely that the participants had explicit
knowledge of the sequence length or number of sequence repeats, as also indicated by
debriefing. Further, to ensure that participants did not simply memorize the first stimulus in
the sequence during scanning, we randomized (across trials) the orientation of the first

stimulus that was then followed by the remaining seven items in the sequence. Thus, it is
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unlikely that participants memorized the orientation of stimuli presented at individual
temporal positions for each of the four trained sequences. In contrast, it is more likely that
participants learned temporal associations between sequence items (i.e. pairs or triplets)

during training that remained the same in the test sequences and facilitated their predictions.

Control task scan (Figurelb): Participants completed 7 to 9 runs (12 trials per run) of a
control task per scan session. To test learning improvement specific to structured sequences
we presented participants with a random sequence of leftwards and rightwards oriented
gratings that were presented equally often but at randomised positions within the sequence.
To ensure that performance in the control task was comparable to the prediction task after
training, we asked participants to compare the orientation of the test grating with a cued
orientation presented after the sequence. This allowed us to compare fMRI activations
between tasks (prediction vs. control) with comparable levels of behavioural performance.
Each run followed an event-related design comprising 12 trials and a fixation block (15 s) at
the beginning and end of the run. The per-trial design for the control task matched that of the
prediction task. Each trial (28.5 s long) comprised a random sequence of eight leftwards
(135°) or rightwards (45°) oriented gratings (i.e. gratings were presented at random order in
the sequence). Each grating was presented for 0.25 s followed by fixation for 0.2 s. This
random sequence of gratings was followed by a cue: ‘R’ or ‘L’ (0.25 s) indicating whether
the participants should remember a rightwards or leftwards oriented grating respectively. This
cue was followed by a fixation period (11.35 s), a cue (black square, 0.5 s), a test grating (0.5
s) and a red dot (2 s) before the start of the next trial. The control and prediction tasks were
matched on a trial-by-trial basis for the orientation of expected and remembered items; that
is, the orientation indicated by the cue in the control task matched the expected orientation in

the prediction task on a per-trial basis. The participants were instructed to pay attention to

10
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the sequence, remember a grating rotated leftwards or rightwards as indicated by the cue and

indicate whether the test grating matched the cued orientation.

Orientation decoding scan: All participants completed two runs of an orientation decoding

experiment following procedures described previously (Harrison and Tong 2009).

Participants were presented with the same gratings as in the prediction and control task
(100% contrast and oriented either leftwards or rightwards). Leftwards vs. rightwards
oriented gratings were presented in separate 15 s long blocks. Similar to the prediction task
scans, to avoid adaptation due to stimulus repetition, we randomized the phase and jittered
the orientation of the gratings within a range of 2° across trials. Each block comprised 30
gratings. Each grating was presented for 0.25 s followed by a blank interval of 0.25 s. Each
run comprised 20 blocks (10 per orientation) and two fixation blocks: one in the beginning
and one at the end of the run. The order of the blocks was randomized across runs.
Participants were asked to perform a contrast change detection task on the fixation. That is,
participants were instructed to press a button when they detected a contrast change at fixation

(twice per block at random time points).

Retinotopic mapping scans: For each participant we independently localized regions in the
early (V1, V2) and higher (V3v, V3d & hV4) visual areas following standard retinotopic

mapping procedures (e.g. Sereno et al. 1995). Data from polar and eccentricity scans were

collected either during the pre- or post-training scan session. hV4 comprises the ventral but

not the dorsal sub-region of V4.

fMRI Data Acquisition

fMRI data were acquired in a 3T Achieva Philips scanner at the Birmingham University
Imaging Centre using an eight-channel head coil. Anatomical images were obtained using a

sagittal three-dimensional T1-weighted sequence (voxel size=1 X 1 x 1 mm, slices=175).

11
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Functional EPI images were acquired using a high-resolution gradient echo-pulse sequence
covering the occipital and posterior temporal cortex (20 slices at 1.5 x 1.5 X 2 mm resolution;
matrix size 128 x 128; slice thickness: 2mm with no gap between slices; FOV: 192 x 192;

TR: repetition time, 1500-ms; TE: time to echo, 35 ms).

Eye movement recordings

We recorded eye-movements (n=6) using the ASL 6000 Eye-tracker (Applied Science
Laboratories, Bedford, MA, sampling rate: 60Hz) in the scanner. Eye tracking data were pre-
processed using the EyeNal Data Analysis software (Applied Science Laboratories, Bedford,
MA) and analyzed using custom toolbox based on Matlab (Mathworks, MA) software. Due
to poor signal quality, data from two participants were excluded from the analysis. Runs with
more than 10% signal loss were removed from the analysis. We computed (A) horizontal eye
position, (B) vertical eye position, (C) proportion of saccades for each condition at different
saccade amplitude ranges, and (D) number of saccades per trial per condition during the
blank interval following the sequence presentation, separately for each pre-training (I) and
post-training (IT) sessions. Histograms of the horizontal and vertical eye positions peaked and
were centered on the fixation at zero degrees suggesting that participants could fixate well

both before and after training when predicting leftwards or rightwards oriented gratings.

Data analysis

Behavioral data analysis

The performance on the task was assessed by the accuracy in correctly predicting whether the
next grating in the sequence was left or right. For the training sessions, we averaged the
accuracy for each run of the sequential sessions and estimated a learning rate by fitting a

logarithmic function to the data (Figure 1c). Data across runs were fitted (least squares non-
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linear fit) using the following equation: y=k*log (x) + c; where k is the value of the curve

tangent at x=1, and c is the value of y for x=1.

fMRI data pre-processing

Neuroimaging data was analyzed using Brain Voyager QX (Brain Innovation, Maastricht,
Netherlands). Anatomical data was used for 3D cortex reconstruction, inflation and
flattening. Pre-processing of functional data included slice scan time correction, three-
dimensional motion correction, linear trend removal, and temporal high-pass filtering (3
cycles). fMRI data was recorded at high resolution (1.5. x 1.5 mm in plane) and interpolated
to 2 x 2 x 2 mm using trilinear interpolation. Trials with head motion larger than 1 mm of
translation or 1° of rotation or sharp motion above 0.5 mm (on average 25 trials per session
across areas and tasks) were excluded from the analysis. Runs whose motion analysis resulted
in the exclusion of more than 50% of the trials were excluded from further analysis. The
functional images were manually aligned to anatomical data and the complete data were
transformed into Talairach space. For each observer, the functional imaging data between the
four sessions were co-aligned, registering all the volumes for each observer to the first
functional volume of the first run and session. The retinotopic mapping scans (polar and
eccentricity) were also co-aligned with the first volume of the first run and session. This

procedure ensured a cautious co-registration across sessions.

fMRI decoding

We used a linear support vector machine (SVM) with a leave-one-run-out cross-validation
procedure for pattern classification. To investigate the link between fMRI activity and the
participants’ responses, we tested the classifier’s performance in decoding the participant’s
prediction (leftwards vs. rightwards); that is, if the participant responded that a leftwards

oriented test grating was ‘correct’, they predicted ‘left’, if they indicated ‘incorrect’, then they
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predicted ‘right’ and vice-versa. That is, we trained the classifier to associate fMRI signals
with a label (Predicted Left vs. Predicted Right) as indicated by the participant’s response to
the test grating in each trial. To control for potential bias in the classification due to the
unequal numbers of trials responded to as ‘correct’ or ‘incorrect’ by the participants, we used
a cost-factor and weighed the error term during SVM training by the ratio of fMRI patterns

related to ‘correct response’ over fMRI patterns related to ‘incorrect response’.

To select voxels for the pattern classification analysis, we used the retinotopic
mapping scans for each participant. We selected voxels that corresponded to stimulus area of
8% of visual angle and were significantly more activated by the grating stimuli than the
fixation (p<0.05, uncorrected). This procedure allowed us to avoid voxels corresponding to

the edges of the grating stimulus (Harrison and Tong 2009). Each voxel time course was z-

score normalized for each experimental run separately. The data pattern for each trial was
generated by shifting the fMRI time series by 3 volumes (4.5 s) to account for the
hemodynamic delay. That is, volumes corresponding to the no-stimulation period following
the sequence (volumes 4 to 10) were shifted to 7 to 13 (Figure 3 shows fMRI volumes before
shifting to account for the hemodynamic delay). We trained and tested the classifier during
this no-stimulation period (volumes 8 to 13), excluding the first one (volume 7) to avoid
interference from BOLD responses related to the preceding sequence. We performed this
analysis on each of these volumes separately as well as on the average signal across these
volumes. For each cross-validation (from 5 to 9 depending on the number of runs per
participant), we used 60 to 108 patterns (for averaged signals across no-stimulation volumes)
for training the classifier and 12 independent patterns for testing the classifier’s accuracy. We
plotted classifier accuracy across voxels - starting with voxels that have the highest t-value
for gratings vs. fixation -and selected the 300 most activated voxels in each ROI for each

participant, as pattern classification accuracy had saturated at this pattern size across areas.

14
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We then averaged the classifier’s accuracy for this pattern size across cross-validations for

each participant.

Generalization of classifier accuracy

To evaluate the correspondence between neural representations for physical and predicted
orientations we followed two different approaches. First, we identified common voxels across
experiments (i.e. informative voxels for both the classification of the physical and the
predicted orientation). That is, using a recursive feature elimination (RFE) procedure (Ban et
al. 2012; De Martino et al. 2008) we identified voxels across visual areas that contributed (i.e.
as indicated by the classifier’s linear weights) to the decoding of (1) the physical stimulus,
and (2) the predicted stimulus orientations using data from the orientation decoding
experiment and the prediction task respectively. These two RFE analyses were conducted
separately (i.e. the classifiers were trained using a cross validation procedure either on the
physical or the predicted orientations) resulting in two sets of voxels: voxels informative for
the classification of the physical stimulus and voxels informative for the classification of the
predicted stimulus. We then ranked voxels in each visual area resulting from the two RFE
analyses and chose voxels that were informative in both analyses (i.e. 300 most informative
voxels). We used these voxels to train an SVM classifier on fMRI signals related to physical
orientations and tested the accuracy of this classifier in decoding predicted orientations from
fMRI data collected when observers performed the prediction task (i.e. no-stimulation
interval following the sequence presentation). It is important to note that we run the RFE
analysis and selected voxels separately for each cross-validation of the MVPA analysis (i.e.
decoding of predicted orientations) to avoid circularity; that is we excluded the test data from
both the RFE and the decoding analysis. The results from this analysis are presented in Figure
5. Second, using the same recursive feature elimination (RFE) procedure we identified the

top 300 voxels that contributed (i.e. as indicated by the classifier’s linear weights) to the

15
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decoding of the physical stimulus using data from the orientation decoding experiment only.
We then used these voxels to train and test the classifier (using a leave-one-run-out cross-
validation procedure) in decoding predicted orientations from fMRI data collected when
observers performed the prediction task (i.e. no-stimulation interval following the sequence
presentation). The results from the second procedure were similar to those reported in Figure
3, suggesting that the generalization of classification accuracy that we observed could not be

simply due to the voxel selection or MVPA procedure used.

Results
Behavioural results

We presented participants with a sequence of leftwards and rightwards oriented gratings
(Figure la) and asked them to predict the next grating in the sequence. We trained
participants on this prediction task without feedback for 3 to 5 sessions (as determined by
individual performance). To control for the possibility that observers memorized specific
items in the sequence or full sequences rather than learning the temporal structure, we trained
participants with four different sequences and presented all stimuli at the same rate and in a
continuous stream. Further, the position of the test stimulus was randomized across trials, the
last three items were the same across sequences, and for half of the trials the incorrect test

stimulus was presented.

Before and after training, we tested participants while performing the prediction task and a
control task. In particular, for the prediction task, we asked participants to indicate whether
the orientation of a test grating matched the orientation they anticipated following a
preceding structured sequence of gratings (Figure 1a). For the control task participants were
asked to indicate whether the orientation of a test stimulus matched the orientation of a cued

grating presented following a random sequence of oriented gratings (Figure 1b).
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Performance on the prediction task improved for most participants (12/16 participants
improved; 4 participants did not improve during training showing 57% mean performance at
the last training session) as they gained more exposure to the temporal sequences (Figure 1c¢).
We further focus on the analysis of the behavioral and fMRI data for the 12 participants that
showed improvement during training and post-training performance higher than 80% correct;
the data of the weaker learners (post-training performance lower than 65% correct) are
considered later in a separate control analysis. Comparing performance in the prediction and
control task during scanning (Figure 1d) showed that observers’ performance improved after
training in the prediction task, while performance in the control task remained high both
before and after training. These results were confirmed by a 2 (fask: prediction vs. control
task) x 2 (session: pre- vs. post-test) repeated measures ANOVA showing a significant
interaction between task and session (F);; = 76.08, P < .001), consistent with enhanced
performance after training in the prediction (#;; = -8.50, P < .001) but not in the control task
(tn = 1.42, P = .183). The comparable behavioural performance after training for the
prediction and control task, that involved structured vs. random sequences respectively,
ensured that comparing fMRI activation patterns between the two tasks reflected learning
specific to the sequence structure that was not confounded by differences in behavioural

performance.

Improvement in the prediction task after training indicates that participants acquired
knowledge of the sequence structure. Debriefing the participants suggests that this knowledge
was most likely implicit and it was unlikely that the participants memorized the sequences
explicitly. In particular, participants were significantly more confident in their responses after
training (¢;; = -5.03, P < .001) and found the task easier (#;; = -4.31, P = .001), but did not
feel significantly more or less tired (#;; = -1.48, P =.166). Interestingly, this was not the case

for weaker learners that did not report any substantial changes in their confidence (pre-
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training mean = 1.5, standard deviation = 0.58; post-training mean = 1.75, standard deviation
= 0.96) or task difficulty (pre-training mean = 3.50, standard deviation = 1.29; post-training
mean = 2.25, standard deviation = 0.5). Finally, we asked participants to estimate the number
of sequences presented during the experiment; this number did not change significantly after
training (¢#1; = -0.41, P = .689). Only three participants indicated that there were four
sequences in total, but none of the participants could explicitly report the sequences correctly.
Taken together, the debriefing data suggest that it was unlikely that the participants improved

in the task by explicitly memorizing the sequences.

FIGURE 1 ABOUT HERE

fMRI results: decoding predictions in visual cortex

To test whether learning of temporal regularities shapes sensory predictions in visual cortex,
we scanned participants before and after training. For each participant we identified
retinotopic visual areas using high-resolution fMRI and standard mapping procedures. To test
for fMRI signals related to the participants’ predictions rather than the stimuli per se, we
extracted activity during a blank interval between the temporal sequences and the test
stimulus. Analysis of univariate fMRI signals (percent signal change from mean BOLD
response across trials) confirmed that BOLD responses during this no-stimulation period
were low and did not differ before vs. after training (paired t-test for all ROIs, P > 0.05;
Figure 2a). However, previous studies have shown that neural preference for orientation can
be decoded from no-stimulated intervals in the visual cortex using multi-voxel pattern

(MVPA) classification analysis (Harrison and Tong 2009; Kamitani and Tong 2005; Serences

et al. 2009; Tong and Pratte 2012). Using this approach, we trained an SVM classifier to

associate responses from each fMRI volume to the participants’ prediction in each trial and

tested the accuracy of the classifier in predicting the participants’ responses (leftwards vs.
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rightwards predicted orientation) using an independent data set. In contrast to the univariate
signals, this analysis allowed us to successfully decode the orientation predicted by the
participants from fMRI signals during periods of no-stimulation in V1. Importantly,
classification accuracy increased after compared to before training (Figure 2b). Inspection of
the MVPA accuracy time course across volumes showed that the improvement in decoding
performance after training peaked during the blank interval following the presentation of the
temporal sequence during which participants predicted the orientation of the upcoming
stimulus (Figure 2b). This result reflects learning-dependent changes specific to processing of

predicted orientations in the primary visual cortex.

FIGURE 2 ABOUT HERE

To quantify and compare decoding accuracies across visual areas, we selected and averaged
fMRI responses from all volumes (8-13) that corresponded to the no-stimulation period
during which participants predicted the orientation of the upcoming stimulus. Consistent with
the behavioral results for the prediction task, decoding of predicted orientations improved
significantly after training (Figure 3). In contrast for the control task, orientation decoding did

not change with training, consistent with the participants’ behaviour in this task.

Comparing decoding accuracies between tasks showed higher decoding accuracies after
training for the prediction than the control task. In particular, a 2 (session: pre- vs. post-
training scan) X 2 (task: prediction vs. control) X 6 (ROI: VI1,V2,V3d,V3a,V3v and hV4)
repeated-measures ANOVA showed a significant interaction between rask and session (F 1)
= 9.77, P = .010). Enhanced decoding accuracy after training for the prediction task was
primarily observed in early visual areas V1 and V2. In particular, the interaction between task
and session was significant in V1 (F; = 6.683, P =.025) and V2 (F; = 6.55, P =.027), as

decoding accuracy increased after training only for the prediction task (paired t-test: t;; = -
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5.03, P < .001), but not for the control task (P = .783). No significant interactions were
observed in V3d and V3v, hV4 and V3a (F < 1). Furthermore, there was no three-way
interaction (session X task X ROI: Fs75 = 0.545, P = .741), as indicated by higher
classification accuracy in V1 and V2 compared to higher visual areas for both the prediction
and the control task. These weaker effects in higher compared to early (V1, V2) visual areas
(effect of ROI: Fsss =4.44, P = .002) have been previously observed in fMRI studies testing

responses in non-stimulated visual cortex (Harrison and Tong 2009; Kok et al. 2013; Kok et

al. 2012; Smith and Muckli 2010) and are potentially due to stronger orientation selective

responses in early visual areas (Kamitani and Tong 2005).

Further, additional analysis after removing more volumes at the beginning (volumes 8 and 9)
and the end (volume 13) -to avoid activity due to stimulation from the sequences or the test
grating- showed the same pattern of results. As in the main analysis, a 2 (session: pre- vs.
post-training scan) X 2 (task: prediction vs. control) X 6 (ROI: V1,V2,V3d,V3a,V3v and hV4)
repeated-measures ANOVA showed a significant interaction between task and session (F 11
= 7.80, P = .017). Enhanced decoding accuracy after training for the prediction task was
primarily observed in early visual areas V1 and V2. That is, we observed significant effects
for session in V1 (Fy,, = 17.77, P = .001) and V2 (F;;; = 7.92, P = .017), but not in V3d,
V3v, V3a and hV4. There was a significant interaction between session and task in both V1
(Fiin = 17.3, P = .002) and V2 (F;;; = 11.39, P = .006), consistent with enhanced

classification accuracy after training only for the prediction task.

FIGURE 3 ABOUT HERE

These results provide evidence for visual cortex representations that are specific to the
learned sequence structure - rather than random sequences as presented in the control task-

and reflect participants’ predictions. Increased decoding accuracies after training for the
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prediction task could not be simply explained by (1) general familiarity with the stimuli or
the task after training, as these remained the same across tasks, (2) differences in the task
design. In particular, as both tasks require a coarse (left vs. right) rather than fine orientation
matching of the predicted or cued orientation to the test stimulus, participants may hold in
memory and potentially mentally imagine a label or visual image of the predicted or cued
stimulus. The cue in the control task may encourage participants to keep a label in memory
that can be visualized for comparison to the visual test stimulus, while in the prediction task
there is no cue and the participants may verbalize or visualize their prediction. However this
difference in task design did not result in significant differences in average fMRI responses
(main effect for task: Fy 11 = 0.01, P = .905; interaction between session and task: Fy;; = 0.41,
P = .537) during the non-stimulation period, suggesting similar effect of working memory or
imagery processes in early visual cortex across tasks. In contrast, the key difference between
tasks is in the content (predicted stimulus following a structured sequence vs. cued physical
stimulus following a random sequence) of the representation accessed by the participants.
Thus, higher decoding accuracies after training in the prediction compared to the control
task—despite similar behavioral performance after training in both tasks (paired t-test: ¢, = -
1.92, P = 0.082)- suggest that our results indicate predictive representations specific to the
trained structured sequences rather than differences in working memory or visual imagery

processes across tasks.

Finally, significant correlation of the participants’ performance with decoding accuracy in V1
after training (r = .609, P =.036) suggest that selective representations for predicted
orientation relate to the observers’ enhanced ability to predict upcoming stimuli after training
on temporal sequences (Figure 4a). Interestingly, decoding accuracy did not improve
significantly after training in any of the visual areas (F <1) for participants (n=4) who did not

show improved performance during training (57% mean performance at the last training
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session). A 2 (session: pre- vs. post-training scan) X 6 (ROI: V1,V2,V3d,V3a,V3v,hV4)
repeated-measures ANOVA showed no significant main effects for session (F;3 = 0.028, P =
.878), ROI nor a significant interaction (F;3 = 0.073, P = .804) (Figure 4b). Taken together
these results suggest a strong link between the observers’ ability to predict the identity of
upcoming stimuli following training on temporal sequences and orientation representations in

early visual areas.

FIGURE 4 ABOUT HERE
Comparing physical vs. predicted orientation representations
Finally, we asked whether neural populations —as recorded at a large scale by fMRI- that encode
physical stimulus orientation may also represent predicted orientation. To this end, we tested
whether activity patterns for predicted orientations resemble stimulus-driven activity elicited
during viewing of oriented gratings. We collected an independent set of fMRI data while the
participants viewed leftwards vs. rightwards oriented gratings in separate blocks (45° or

135°). Consistent with previous studies (Harrison and Tong 2009; Haynes and Rees 2005;

Kamitani and Tong 2005) decoding of orientation from stimulus-driven activity was

successful across visual areas (Figure 5a). To evaluate the correspondence between neural
representations for physical and predicted orientations, we trained an SVM on fMRI signals
related to physical orientations and tested the accuracy of the classifier in decoding predicted
orientations from fMRI data collected when observers performed the prediction task. Despite
stimulus and task differences between these experiments, we observed generalization of
classifier performance in V1 and V2 after training but not in higher areas where orientation
selectivity is known to be weaker. Importantly, we observed improved classification accuracy
for predicted orientations after training, suggesting that learning temporal sequences
modulates neural populations in early visual cortex involved in the selective processing of

orientation (Figure 5b). In particular, a 2 (session: pre- vs. post-training) X 6 (ROI: VI, V2,
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V3d, V3a, V3v and hV4) repeated-measures ANOVA showed higher classification accuracy
after training (i.e. main effect for session: F;;; = 18.768, P = .001). Although there was no
significant interaction between session and ROI (F1; = 1.05, P = .400), improved decoding
accuracy after compared to before training was more prominent in V1 (paired t-test: #;; = -
3.62, P = .004) and V2 (paired t-test: ;1 = -4.16, P = .002), but only marginally significant
for V3d (paired t-test: #;; = -1.93, P = .080). Similar analysis for the control task (Figure 5c)
did not show any significant differences after vs. before training in predicting cued
orientations across ROIls (paired t-tests: #;; <1, n.s.). Comparing generalization of classifier
performance between the prediction and control tasks showed a significant interaction
between task and session (F;; = 5.17, P = .044), consistent with our main findings suggesting
enhanced predictive representations that are specific to training with structured than random

sequences of items.

FIGURE 5 ABOUT HERE
Control analyses

We conducted the following additional analyses to control for possible alternative

explanations of the results.

First, to control for the possibility that our results are due to random correlations in the data,
we conducted the same decoding analysis using randomly permuted fMRI patterns (i.e. we
randomized the correspondence between fMRI data and labels and performed MVPA for
10000 iterations). This analysis resulted in classification accuracies that did not differ from
chance for both pre- (mean=50%, standard deviation = 0.05) and post-training (mean =
49.8%, standard deviation = 0.054) data (# < I, n.s.) in V1. In particular, decoding accuracy
for the prediction task was higher than the 97.5th percentile of the random distribution for 10

out of 12 participants after training but only for 2 participants before training. Similar results
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were observed across ROIls. This analysis suggests that our decoding results could not be

simply accounted for by random variations in the data’

Second, we focused on fMRI decoding based on the participants’ responses in the prediction
task, as our goal was to understand whether the visual cortex contains information that relates
to behavioral predictions. However, this analysis may be confounded by differences in the
number of correct trials between sessions; that is, larger number of correct trials after
compared to before training. To control for this, we first conducted the same analysis using
fMRI signals only for correct trials for both scan sessions. A 2 (session: pre- vs. post-training
scan) X 2 (task: prediction vs. control) X 6 (ROI: VI1,V2,V3d,V3a,V3v and hV4) repeated-
measures ANOVA, showed similar improvement of classification accuracies after training.
That is, we observed significantly higher classification accuracy after than before training in
the main task as indicated by significant session x task interactions for V1 (F;;; = 20.59, P =
.001), V2 (Fy11 = 1543, P =.002), V3a (Fy,;; = 8.83, P =.013) and V3d (Fi,; =5.26, P =
.043), but not for V3v (F,1; = 3.056, P =.108) and hV4 (F,;; = 0.356, P = .563). Second, we
performed an additional analysis (Figure 6) that decoded the expected orientation as
determined by the presented sequence rather than the participants' prediction. We found a
similar pattern of results, with significantly higher classification accuracies after than before
training across ROIs (session x task: F111 = 10.76, P = .007). Interestingly, this was not the
case for weaker learners: prediction accuracies did not change across sessions, consistent
with the results presented in Figure 4b. These control analyses suggest that our results could

not be simply explained by differences in task difficulty between scanning sessions.

FIGURE 6 ABOUT HERE

Third, is it possible that the difference in the decoding accuracy for the prediction task before
and after training was due to different strategies adopted by the observers? That is, before

training the participants found the task too difficult and responded randomly when the test
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stimulus appeared instead of predicting the upcoming stimulus. However, low prediction
accuracies before training for the expected orientation as determined by the presented
sequence (Figure 6) suggests that fMRI patterns in visual cortex contain information about
structured sequences after but not before training. As this analysis does not rely on the
participants’ responses, low accuracies before training could not be due to the participants’

response strategy (e.g. guessing).

Fourth, our results could not be simply explained by differences in participants’ attention
between scan sessions, as analysis of univariate fMRI signals for leftwards and rightwards
oriented gratings did not differ before and after training. Further, this analysis justifies our
choice of multi-voxel pattern classification methods for the analysis of predictive
representations that have been shown to be more sensitive than univariate approaches in
extracting selective signals from brain patterns. Finally, analysis of eye-movement recordings
did not show any differences between scanning sessions and between left vs. rightwards
predicted orientations across sessions, suggesting that it is unlikely that eye movements could
explain our results. In particular, a 2 (session: pre- vs. post-training) X 2 (orientation: left- vs.
right) repeated-measures ANOVA revealed that there was no significant effects of session or
orientation for the mean eye position (session: F;3=0.086, P = .789; orientation: F 3) = 0.29,
P = .625), mean saccade amplitude (F3=2.2, P =.230; F,3=0.48, P = .536), or number of
saccades per trial per condition (F; 3= 0.57, P = .504; F,3=0.42, P = .564). Also, there was
no significant interaction between session and orientation for the mean eye position (F) 3=
1.89, P = .263), the number of saccades (F 3= 0.55, P = .512) or the saccade amplitude (3

=0.44, P =.55).

Discussion

Our results provide evidence that learning of temporal regularities supports our ability to

predict future events by reactivating selective sensory representations in primary visual
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cortex. Interestingly, these predictive representations appear to be driven by the same large-
scale neural populations that encode physical stimulus properties (i.e. orientation) and to be
specific to the learned sequence structure. Further, these representations reflect our ability to
predict future events as indicated by a significant correlation between fMRI decoding and

behavioral improvement in the prediction task after training.

Consistent with our previous behavioral work (Baker et al. 2013), we demonstrate that

exposure to temporal regularities in a scene allows us to accumulate information about its
structure and predict future events. Although we used deterministic sequences, we ensured
that observers learned the global sequence structure (i.e. temporal order statistics across items
rather than each item position in the sequence) by matching the frequency of occurrence of
each item (i.e. grating orientation) in the sequence. Previous studies have suggested that
learning of regularities may occur implicitly in a range of tasks: visuomotor sequence

learning (Nissen and Bullemer 1987), artificial grammar learning (Reber 1967), probabilistic

category learning (Knowlton et al. 1994), and contextual cue learning (Chun and Jiang 1998).

In our study, participants were exposed to the sequences without feedback but were asked to
make an explicit judgement about the identity of the upcoming test stimulus (leftward vs.
rightward oriented grating) making them aware of the dependencies between the stimuli
presented in the sequence. However, debriefing the participants showed that it was unlikely
that the participants explicitly memorized the sequences, suggesting that they made

predictions based on implicit knowledge of temporal structure.

Our fMRI findings advance our understanding of the brain mechanisms that support our
ability to translate previous knowledge to future predictions in four main respects. First,
previous imaging and physiology studies suggest that extensive training on visual detection

or discrimination tasks may modulate processing in primary visual cortex (Bao et al. 2010;

Furmanski et al. 2004; Jehee et al. 2012; Schoups et al. 2001). Our findings extend beyond
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this work showing that mere exposure to the statistics of the environment alters selectively
orientation representations in primary visual cortex to reflect the observers’ prediction.
Further, recent animal physiology studies provide evidence for reactivation of neural
responses in visual cortex when neurons are activated in a temporal sequence (Eagleman and

Dragoi 2012; Gavornik and Bear 2014). Our study provides novel evidence that such

experience-dependent neural reactivation correlates and may facilitate the ability of human
observers to make predictions of upcoming sensory events. Although the nature of the

signals that support orientation decoding has been recently debated (Freeman et al. 2011),

here we demonstrate that the same large-scale neural populations that encode physical
orientations in primary visual cortex encode also the predicted orientations. Thus, our work
provides novel evidence that previous knowledge alters processing in primary visual cortex

that mediates our ability to make sensory predictions.

Second, learning of spatial and temporal regularities has been suggested to engage the

striatum and medial temporal lobe regions (Gheysen et al. 2011; Hsieh et al. 2014; Rauch et

al. 1997; Rose et al. 2011; Schapiro et al. 2014; Schapiro et al. 2012; Schendan et al. 2003a).

For example, studies (Foerde et al. 2006; Poldrack et al. 2001; Poldrack et al. 1999) using the

weather prediction paradigm have implicated these regions in implicit learning of
probabilistic associations. Previous work has implicated mainly striatal regions (e.g. caudate

and putamen) in implicit learning (Hazeltine et al. 1997; Rauch et al. 1995), while the medial

temporal lobe in both implicit and explicit learning (Schendan et al. 2003a; b). Our results

suggest interactions between these memory circuits and visual cortex; that is, learning of
temporal structures that is known to engage this circuit may shape representations in primary
visual cortex that relate to our ability to make sensory predictions. This is consistent with
recent work implicating the hippocampus in memory of temporal order (for a review see:

Eichenbaum 2013; Howard and Eichenbaum 2013), and prospective memory of simulated
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future events (Ingvar 1985; Szpunar et al. 2013). Further, related work has suggested that
associative learning engaging medial temporal lobe regions modulates processing in

inferotemporal (Meyer and Olson 2011; Miyashita 1993) and area MT (Schlack and Albright

2007) and early visual (Bosch et al. 2014) cortex. While this previous work has focused on

paired associations, we propose that learning higher order regularities in the context of
temporal sequences may employ similar brain circuits to translate knowledge about temporal

structure in medial temporal lobe to predictions in sensory areas.

Third, there is accumulating evidence for the role of primary visual cortex in predictive

coding. In particular, recent fMRI (Alink et al. 2010; Harrison et al. 2007; Kok et al. 2014;

Kok et al. 2012; Murray et al. 2002; Schoups et al. 2001; Smith and Muckli 2010;

Summerfield and Egner 2009), and neurophysiology studies (Guo et al. 2007; Kim et al.

2012; Meyer and Olson 2011; Perrett et al. 2009) have shown that responses in visual cortex

are modulated by spatio-temporal context. These findings have been observed in the context
of tasks involving stimulus anticipation based on paired associations or short-term history
(i.e. probability of occurrence for a preceding stimulus). Further, higher responses are
observed for unexpected than expected stimuli, consistent with increased prediction error

when sensory signals and top-down expectations do not correspond (Bastos et al. 2012;

Friston 2005; Summerfield and Egner 2009). Our study extends beyond these findings in

several respects. First, our paradigm allows us to test how longer-term knowledge acquired
through several training sessions rather than short-term stimulus history affects prediction in
primary visual cortex. Second, our study is the first to test the role of sequence learning on
predictions related to visual recognition. Previous work on learning temporal sequences has
focused on implicit measures of sequence learning, such as familiarity judgments or reaction

times (Nissen and Bullemer 1987); for review see (Schwarb and Schumacher 2012).

Although such paradigms implicate that implicit learning of temporal sequences facilitates
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the anticipation of upcoming events, they do not test whether this knowledge can be used to
explicitly predict the identity of upcoming stimuli. In contrast, our design allows us to test for
neural representations related to explicit predictions about the identity of an upcoming
stimulus (i.e. grating orientation) rather than anticipation as revealed typically by implicit
measures (e.g. reaction times, familiarity) of visual recognition. Third, using multi-voxel
pattern classification methods allows us to test how previous knowledge affects selective
processing of sensory features (i.e. orientation) related to the observers’ response (i.e. per-
trial prediction) rather than simply changes in the overall fMRI magnitude related to
expectation. Decoding predicted orientation during a no-stimulation period before the test
stimulus appears allows us to investigate the processes involved in predicting upcoming
sensory events, in contrast to previous work investigating predictive coding based on the

error generated when unexpected stimuli are presented.

Finally, recent imaging work has highlighted the role of primary visual cortex in cognitive

functions such as working memory and visual imagery (Albers et al. 2013; Harrison and

Tong 2009; Serences et al. 2009). The prediction task used in our study involves these

processes, as it entails that participants hold in memory and/or imagine the predicted stimulus
in order to match it to the test stimulus. However, comparing the prediction task with a
control task using random sequences and a similar design involving the same processes (i.e.
holding in memory and/or imagining a grating orientation) demonstrates predictive
representations in primary visual cortex that are specific to the knowledge of structured
sequences. In particular, comparing average fMRI responses for the no-stimulation period
between tasks did not show any significant differences, suggesting that higher orientation
decoding accuracy in the prediction than the control task cannot be simply due to differences
in the task design. In contrast, the critical difference between tasks is in the content of the

representation accessed by the participants (predicted orientation following a structured
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sequence vs. cued physical orientation following a random sequence) which we decode using
multivoxel pattern classification of fMRI data. . This result is further supported by significant
correlation of the participants’ performance in the prediction task with decoding accuracy in V1 after
training. Taken together these results suggest predictive representations in early visual cortex
following learning of structured sequences that cannot not be simply explained by differences

in working memory or visual imagery processes across tasks.

In sum, our findings provide evidence that knowledge of temporal regularities alters
processing in primary visual cortex to support our ability for sensory predictions. The high
resolution imaging adopted in our study afforded us the signal quality necessary to reveal
activity patterns related to predictive representations, but it restricted brain coverage to visual
cortex. Given the complex nature of the BOLD signal, it is possible that the fMRI selectivity
that we observed for predicted orientations is enhanced by feedback from other cortical
circuits. Possible candidates include: a) medial temporal lobe and subcortical areas that are
known to be involved in associative learning and temporal memory, b) prefrontal circuits that

support rule-based behaviours and prediction of future events (Bar 2009; Leaver et al. 2009;

Pasupathy and Miller 2005). It is also important to note that - despite the enhanced sensitivity

of our methodology- decoding reveals neural preferences at the scale of large neural
populations rather than tuning of individual neurons. Therefore, understanding the cortical
circuits that support our ability to translate previous knowledge to sensory predictions
requires further whole brain connectivity studies combining advanced imaging and

neurophysiological techniques.
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Figures

Figure 1. Task design and behavioural performance. (a) Prediction task: in each trial,
participants were presented with a structured sequence of 8 gratings followed by a blank
interval (11.6 s). After this period, a test grating, preceded by a brief cue (black square, 0.5 s),
was presented and the participants had to indicate whether the orientation of the test grating
matched their expectation or not. (b) Control task: the participants were instructed to attend
to the sequence and indicate whether a cued grating (‘R’ or ‘L’) matched the orientation of
the test stimulus or not. The timing for this task was matched to the prediction task. (¢) Mean
proportion of correct responses for each run across training sessions. Data is shown for 12/16
participants that showed improvement after training, excluding participants (n=4) who did
not show improvement in the task after training (57% mean performance at the last training
session). Data across runs were fitted using least squares non-linear fit. Data is shown for 16
blocks (4 training sessions); one participant completed only three sessions, as performance
had already saturated above 80%; the rest of the participants completed either 4 (n = 4) or 5
(n = 7) training sessions. (d) Mean proportion of correct responses during scanning before
and after training for both the prediction and control task. Error bars indicate the S.E.M.
Behavioral data for all 16 participants showed a similar pattern of results; that is, we observed
a significant effect of session (F,11 = 144.13, P <.001) and task and session interaction (F 1,

=76.08, P <.001)

Figure 2. Univariate vs. multivariate analysis of BOLD signals. (a) Univariate mean trial
time course (across voxels and participants) of BOLD responses in V1 (percent signal change
calculated in relation to the average signal across the whole run) for the pre- (light blue) and
post-training scanning sessions (dark blue). The shaded grey area (volumes 8 to 13) indicates
the volumes used to decode the participants’ prediction after accounting for the hemodynamic

lag. Volume 7 was not used to avoid confounding activation from the sequence presentation.
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(b) Mean decoding SVM accuracy (proportion correct) per fMRI volume of the participants’
predictions before (light blue) and after (dark blue) training. Note that per-volume fMRI
signals are noisier than signals averaged across volumes resulting in lower MVPA accuracy.

Error bars indicate the S.E.M.

Figure 3. Comparing MVPA for the prediction and control tasks. Mean classification
accuracy (across volumes 8 to 13 and participants) of the predicted orientation before (light
colours) and after (dark colours) training in early visual areas for the prediction (blue) and

control task (red). Error bars indicate the S.E.M.

Figure 4. Linking classification accuracy and behavioral performance. (a) Correlation
between decoding accuracy for predicted orientations in V1 and performance (percentage of
correct predictions) in the prediction task. No significant correlations (P > 0.05) were
observed for other visual areas; (b) Decoding accuracy across visual areas for the weak-

learners (n=4) in the prediction task before and after training.

Figure 5. Classifier generalization performance. (a) Classification accuracy for decoding
the two grating orientations (rightwards and leftwards) in an independent block design
experiment. Decoding (mean classification accuracy) of (b) predicted (prediction task) and
(c) cued (control task) orientations before (light blue) and after (dark blue) training using a

classifier trained on physical stimulus orientations.

Figure 6. Decoding the expected orientation as determined by the preceding sequence.
Mean classification accuracy (across volumes 8 to 13 and participants) of decoding the
expected orientation as determined by the presented sequence before (light blue) and after

(dark blue) training in early visual areas. Error bars indicate the S.E.M.

35



Figure 1

a. Prediction task

¢. Performance during training

o
©

o
)

Proportion correct
=] =]
(=2} ~

o
3

o
~

o

2 4 6 8 10 12 14 16 18 20
Training runs

Proportion correct

b. Control task

d. Performance in the scanner

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

Pre-training
. Post-training

Prediction task

Control task




Figure 2

a. Percent signal change per volume
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