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Early diagnosis of dementia is critical for assessing disease progression and

potential treatment. State-or-the-art machine learning techniques have been increasingly

employed to take on this diagnostic task. In this study, we employed Generalized

Matrix Learning Vector Quantization (GMLVQ) classifiers to discriminate patients with Mild

Cognitive Impairment (MCI) from healthy controls based on their cognitive skills. Further,

we adopted a “Learning with privileged information” approach to combine cognitive

and fMRI data for the classification task. The resulting classifier operates solely on the

cognitive data while it incorporates the fMRI data as privileged information (PI) during

training. This novel classifier is of practical use as the collection of brain imaging data

is not always possible with patients and older participants. MCI patients and healthy

age-matched controls were trained to extract structure from temporal sequences. We

ask whether machine learning classifiers can be used to discriminate patients from

controls and whether differences between these groups relate to individual cognitive

profiles. To this end, we tested participants in four cognitive tasks: working memory,

cognitive inhibition, divided attention, and selective attention. We also collected fMRI data

before and after training on a probabilistic sequence learning task and extracted fMRI

responses and connectivity as features for machine learning classifiers. Our results show

that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the

cognitive data. In addition, we found that for the baseline classifier, divided attentionž is

the only relevant cognitive feature. When PI was incorporated, divided attention remained

the most relevant feature while cognitive inhibition became also relevant for the task.

Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1) when overall

fMRI signal is used as inputs to the classifier, the post-training session is most relevant;

and (2) when the graph feature reflecting underlying spatiotemporal fMRI pattern is used,

the pre-training session is most relevant. Taken together these results suggest that brain

connectivity before training and overall fMRI signal after training are both diagnostic of

cognitive skills in MCI.

Keywords: discriminative feature extraction, supervised metric learning, learning with privileged information,

learning vector quantization, linear discriminant analysis, fMRI graph feature
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FIGURE 5 | Scatter plot for six possible feature pairs from the four cognitive features as follows: working memory (ndots), cognitive inhibition (tdelay),

divided attention (td
disp

), and selective attention (ts
disp

) (numbered as 1, 2, 3, and 4 in the order). For individual MCI patients and healthy controls, their

feature pairs (i.e., Feature 1 vs. Feature 2) are displayed as red and black dots (respectively). The corresponding class-conditional means and standard deviations are

also displayed by colored error bars. For each panel, the corresponding two features are indicated at the top of each column and on the utmost left of each row

(respectively).

can derive a task-dependent importance matrix denoted by I as
follows:

I =
1

2
(ab⊺ + ba⊺). (25)

Each off-diagonal element of I measures the importance of the
corresponding edge in terms of discriminating MCI patients
from healthy controls. To identify possible sub-networks that
have significantly changed after training, we are first to identify
the edges whose importance measure has significantly changed

after training. To this end, we generated an ensemble of the
selected importance matrices using the procedure that was used
to generate an ensemble of the selected GMLVQ metric (tensor)
matrices for the relevance feature analysis. Subsequently, we
conducted two one-sided sign rank tests for each of the 21 edges
to find those edges whose importance values have significantly
increased or reduced after training. Denote the edge connecting
node i and j by Eij. This analysis revealed that the importance
measure of three following edges has significantly increased: E17,
E16, and E64. A significant reduction of its importance measure
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FIGURE 6 | Left panel: The importance histogram of the six fMRI features as follows: PSC-Cerebellar-Pre, PSC-Cerebellar-Post, PSC-Frontal-Pre, PSC-Frontal-Post,

PSC-Subcortical-Pre, and PSC-Subcortical-Post. (numbered as 1, ..., and 6 in the order). PSC is referred to as Percent Signal Change, Pre as Pre-training session,

Post as Post-training session, Cerebellar (Frontal and Subcortical) as the cerebellar(frontal and subcortical, respectively) ROI. For example, PSC-Cerebellar-Pre means

that the fMRI data were acquired before training and PSC feature was extracted from the cerebellar ROI). Right panel: The same as in the left panel but for the

following fMRI features: FGF-Cerebellar-Pre, FGF-Cerebellar-Post, FGF-Frontal-Pre, FGF-Frontal-Post, FGF-Subcortical-Pre, and FGF-Subcortical-Post.

FIGURE 7 | Left: Boxplot of the following fMRI features: FGF-Frontal-Pre for MCI patients, FGF-Frontal-Pre for healthy controls, FGF-Frontal-Post for MCI patients,

and FGF-Frontal-Post for healthy controls (numbered as 1, 2, 3, and 4 in the order). Note that the y-axis represents the values of the corresponding fMRI features;

Right: Boxplot of the following fMRI features: PSC-Frontal-Pre for MCI patients, PSC-Frontal-Pre for healthy controls, PSC-Frontal-Post for MCI patients, and

PSC-Frontal-Post for healthy controls (numbered as 1, 2, 3, and 4 in the order).

was observed for E65. These four edges are displayed in Figure 8.
Figure 9 highlighted a subtle difference between the sub network
(i.e., E17, E16, and E64) and the single edge E65. For the three-
node sub-network, the connectivity strength is highest for MCI
patients before training. For the single edge E65, the connectivity
strength is lowest for healthy controls before training. This
suggests that FGF-Frontal-Pre, the most relevant feature in M-
FGF, could be related to these three-node and single-node sub-
networks.

4.3.3. Privileged Information
In addition to M-CD, M-PSC, and M-FGF, M+-CD-PSC,
and M+-CD-FGF were conducted to investigate GMLVQ
classification of MCI patients and controls when fMRI features
were incorporated as privileged information. The relevance of
the four cognitive features inM+-CD-PSC andM+-CD-FGFwas
estimated from the diagonal elements of the metric tensors and
displayed in themiddle and right panel of Figure 3 (respectively).
Though PSC and FGF are two different kinds of fMRI features, we
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FIGURE 8 | The node configuration for the frontal ROI which includes

Superior Frontal Gyrus on the right hemisphere and Medial Frontal

Gyrus on the left hemisphere. The straight lines indicate the edges whose

importance for discriminating MCI patients from healthy controls has

significantly changed. For the three-node subnetwork (indicated by red lines),

its importance has increased after training. In contrast, the single-node

subnetwork (indicated by blue line), training has reduced its importance.

still consistently observed that cognitive inhibition and divided
attention are the two most relevant cognitive features. Moreover,
the relevance of divided attention is more profound than that
of cognitive inhibition. When compared to M-CD, cognitive
inhibition did emerge as a relevant feature only when the
privileged information was incorporated. Also, Figure 4 shows
that when compared to M-CD, the interplay between divided
attention and selective attention became significantly positive in
M+-CD-PSC andM+-CD-FGF, that is, the experiments in which
the privileged information was incorporated.

5. CONCLUSION

In this study, we employed GMLVQ classifiers to discriminate
cognitive skills in MCI patients vs. healthy controls using
cognitive and/or fMRI data. Specially, we have adopted
a “Learning with privileged information (PI)” approach to
combine cognitive and fMRI data. In this setting, fMRI data as an
addition to cognitive data are only used to train GMLVQ classifier
and classification of a new participant is solely based on cognitive
data. As the inputs to GMLVQ classifier, the cognitive features
include working memory, cognitive inhibition, divided attention
and selective attention scores. Also, we extracted three different
types of fMRI features from fMRI data as follows: PSC (percent
signal change), and SGF (spatially grouped graph feature) and
(functionally grouped graph feature).

We first tested our baseline GMLVQ classifier with four
cognitive features as inputs. Its classification performance is
measured by (25%, 75%) percentile of Macro-averaged Mean
Absolute Error (MMAE), that is, (0.32, 0.44). The best of the five
fMRI GMLVQ classifiers (i.e., the ones using the fMRI features
as their inputs) yields a lower bound of classification error, which
is (0.14, 0.31). Interestingly, the best of the PI-guided GMLVQ
classifiers (i.e., the ones using the four cognitive features as their
inputs and using the fMRI features as privileged information)
have achieved (0.23. 0.39). This implies that incorporating fMRI
features as privileged information can significantly improve
the classification performance of a baseline GMLVQ classifier
for classification of cognitive skills in MCI patients vs.
controls.

Crucially, we have also performed “relevant feature analysis”
for all three GMLVQ classifiers: the baseline GMLVQ classifier,
the best fMRI-guided GMLVQ classifier, and the fMRI GMLVQ
classifier. For the baseline classifier, “divided attention” is the
only relevant cognitive feature for the classification task. When
the privileged information is incorporated, divided attention
remains the most relevant feature while cognitive inhibition
becomes also relevant. The above results suggest that attention-
rather than only memory-plays an important role for the
classification task. More interestingly, this analysis for the fMRI
GMLVQ classifier suggests that (1) among three ROIs used,
the frontal ROI is most relevant for the classification task;
(2) when the PSC feature as an overall measure of fMRI
response to structured stimuli is used as the inputs to the
classifier, the post-training session is most relevant; and (3)
when the graph feature reflecting underlying spatiotemporal
fMRI pattern is used, the pre-training session is most relevant.
Further analysis has indicated that training may cause an overall
increase of the brain activity only for MCI patients while it
may have “mitigated” the difference in brain connectivity pattern
between MCI patients and healthy controls. Moreover, these
training-dependent changes are most significant for a three-node
sub-network in the frontal ROI. Taken together these results
suggest that brain connectivity before training and overall fMRI
signal after training are both diagnostic of cognitive skills in
MCI

Our study employs machine learning algorithms to investigate
the neurocognitive factors and their interactions that mediate
learning ability in Mild Cognitive Impairment. Our work is
not limited to developing and validating machine learning
approaches; in contrast it advances our understanding of the
neurocognitive mechanisms that mediate learning in health
and disease. For example, the role of cognitive inhibition
in cognitive profile classification seems to be significantly
enhanced when brain imaging information (related to a sequence
learning prediction task) is provided as privileged information.
This opens questions about the possible interplay between
circuits involved in cognitive inhibition and those involved
in learning sequence prediction tasks. We also observed
significant positive interplay between divided and selective
attention when brain imaging data is used as privileged
information. No such interplay was detected without the
privileged information. Again, this raises interesting questions
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FIGURE 9 | For the graph matrices generated in thi study, we display four of their matrix elements which are associated with the four edges

highlighted in Figure 8. G1,6 in the upper-left panel, G1,7 in the upper-right panel, and G4,5 in the lower-left panel measure the connectivity of edge E1.6, E1,7 and

E4,5 (respectively) that form the three-node sub-network. Recall that the task-related importance of this sub-network has significantly increased after training. In

contrast, G5,6 in the lower-right panel measures the connectivity of edge E5.6 and its task-related importance has significantly reduced after training. The four

boxplots in each panel are associated with pre-training session & patient group, pre-training session & control group, post-training session & patient group, and

post-training session & control group (from left to right, numbered as 1, 2, 3, and 4 in the order).

regarding circuitry involved in sequence prediction and the two
attention types.
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